微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Vapor pressure is an important specification property of commercial propane, special duty propane, propane/butane mixtures, and commercial butane that assures adequate vaporization, safety, and compatibility with commercial appliances. Relative density, while not a specification criterion, is necessary for determination of filling densities and custody transfer. The motor octane number (MON) is useful in determining the products' suitability as a fuel for internal combustion engines.1.1 This practice covers, by compositional analysis, the approximate determination of the following physical characteristics of commercial propane, special-duty propane, commercial propane/butane mixtures, and commercial butane (covered by Specification D1835): vapor pressure, relative density, and motor octane number (MON).1.1.1 This practice is not applicable to any product exceeding specifications for nonvolatile residues. (See Test Method D2158.)1.1.2 For calculating motor octane number, this practice is applicable only to mixtures containing 20 % or less of propene.1.1.3 For calculated motor octane number, this practice is based on mixtures containing only components shown in Table 1.1.2 The values stated in SI units are to be regarded as standard.1.2.1 Exceptions: 1.2.1.1 Non-SI units in parentheses are given for information only.1.2.1.2 Motor octane number and relative density are given in MON numbers and dimensionless units, respectively.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

The presence of oil and grease in domestic and industrial waste water is of concern to the public because of its deleterious aesthetic effect and its impact on aquatic life. Regulations and standards have been established that require monitoring of oil and grease in water and waste water. This test method provides an analytical procedure to measure oil and grease in water and waste water.1.1 This test method covers the determination of fluorocarbon-extractable substances as an estimation of the combined oil and grease and the petroleum hydrocarbon contents of a sample of water or waste water in the range from 0.5 to 100 mg/L. It is the user's responsibility to assume the validity of the standard for untested types of water. 1.2 This test method defines oil and grease in water and waste water as that matter which is extractable in the test method and measured by infrared absorption. Similarly, this test method defines petroleum hydrocarbons in water and waste water as that oil and grease which is not adsorbed by silica gel in the test method and that is measured by infrared absorption. 1.3 Low-boiling organic materials are lost by evaporation during the manipulative transfers. However, these evaporative losses are generally much lower than those experienced with gravimetric procedures that require solvent evaporation before the residue is weighed. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D1835-22 Standard Specification for Liquefied Petroleum (LP) Gases Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method measures the amount of solvent-soluble (hexane or petroleum ether) materials in wet blue and wet white.1.1 This test method covers the quantitative extraction of all types of wet blue and wet white with hexane or petroleum ether.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method is useful for rapid identification of waterborne petroleum oil samples as well as oil samples obtained from fuel or storage tanks, or from sand, vegetation, or other substrates. This test method is applicable to weathered and unweathered neat oil samples. The unknown oil is identified through the comparison of the fluorescence spectrum of the oil with the spectra (obtained at similar instrumental settings on the same instrument) of possible source samples. A match of the entire spectrum between the unknown and possible source sample indicates a common source.1.1 This test method covers the comparison of waterborne petroleum oils with oils from possible sources by means of fluorescence spectroscopy (1). Useful references for this test method include: (2) and (3) for fluorescence analysis in general and (4), (5), and (6) for oil spill identification including fluorescence. 1.2 This test method is applicable to crude or refined petroleum products, for any sample of neat oil, waterborne oil, or sample of oil-soaked material. Unless the samples are collected soon after the spill occurs, it is not recommended that volatile fuels such as gasoline, kerosine, and No. 1 fuel oils be analyzed by this test method, because their fluorescence signatures change rapidly with weathering. Some No. 2 fuel oils and light crude oils may only be identifiable up to 2 days weathering, or less, depending on the severity of weathering. In general, samples weathered up to 1 week may be identified, although longer periods of weathering may be tolerated for heavy residual oils, oil weathered under Arctic conditions, or oil that has been protected from weathering by collecting in a thick layer. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 LPG samples can change composition during storage and use from preferential vaporization of lighter (lower molecular weight) hydrocarbon components, dissolved inert gases (N2, Ar, He, and so forth) and other dissolved gases/liquids (NH3, CO2, H2S, H2O, etc.). Careful selection of cylinder type, cylinder volume, and use of inert gas for pressurizing cylinders is required to ensure that composition changes are small enough to maintain the integrity of LPG when used as a QC reference material for various LPG test methods.5.2 Monitoring of ongoing precision and bias on QC materials using control chart techniques in accordance with Practice D6299 can be used to establish the need for calibration or maintenance.1.1 This practice covers information for the storage and use of LPG samples in standard cylinders of the type used in sampling method, Practice D1265 and floating piston cylinders used in sampling method, Practice D3700.1.2 This practice is especially applicable when the LPG sample is used as a quality control (QC) reference material for LPG test methods, such as gas chromatography (GC) analysis (Test Method D2163) or vapor pressure (Test Method D6897) that use only a few mL per test, since relatively small portable Department of Transportation (DOT) cylinders (for example, 20 lb common barbecue cylinders, or common Mower/Forklift cylinders) can be used.1.2.1 Modification of the pressure relief (QCC1) valve on single access port cylinders may prohibit the collection or transport of cylinders outside of permitted facilities such as refineries, gas plants or pipeline stations. No modification is generally required for multi-port mower/forklift cylinders that have a separate access port for pressure relief and additional access ports for filling, liquid/vapor withdrawal or liquid level indication. Consult the Authority having Jurisdiction for detailed regional regulatory requirements for transport of LPG in pressurized cylinders.1.3 This practice can be applied to other test methods. However, test methods that require a large amount of sample per test (for example, manual vapor pressure Test Method D1267) will require QC volumes in excess of 1000 L if stored in standard DOT cylinders or American Society of Mechanical Engineers (ASME) vessels.1.3.1 Test methods for trace materials that may be sensitive to vessel surfaces (for example H2O, H2S/sulfur, or trace residues) could preferably use aluminum, stainless steel or internally coated vessels to minimize surface absorption/reaction or larger vessels to minimize surface/volume ratio.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The cloud point of petroleum products and biodiesel fuels is an index of the lowest temperature of their utility for certain applications. Wax crystals of sufficient quantity can plug filters used in some fuel systems.5.2 Petroleum blending operations require a precise measurement of the cloud point.5.3 This test method can determine the temperature of the test specimen at which wax crystals have formed sufficiently to be observed as a cloud with a resolution of 0.1 °C.5.4 This test method provides results that are equivalent to Test Method D5773/IP 446. The temperature results of this test method have been found to be warmer than those of Test Method D2500/IP 219 by an average of 0.49 °C; however, no sample specific bias was observed.5.5 Similar to Test Method D5773/IP 446, this test method determines cloud point in a shorter period of time than Test Method D2500/IP 219.NOTE 1: In cases of samples with cloud points near ambient temperatures, time savings may not be realized.NOTE 2: This test method eliminates most of the operator time required of Test Method D2500/IP 219.NOTE 3: The only utility required by the apparatus described in this test method is electricity with power consumption of approximately 20 W. The electric power can come from an alternating current source (wall receptacle) or direct current source such as a battery or a cigarette lighter plug in a vehicle.NOTE 4: The apparatus described by this test method can be made much smaller and lighter than that of Test Methods D5773/IP 446 and D2500/IP 219, allowing full portability.NOTE 5: The apparatus used in the 2006 interlaboratory study weighed approximately 1 kg and occupied the space of a small lunch box. See Section 13.1.1 This test method covers the determination of the cloud point of petroleum products and biodiesel fuels that are transparent in layers 40 mm in thickness by an automatic instrument.1.2 This test method covers the range of temperatures from –60 °C to +20 °C with temperature resolution of 0.1 °C; however, the range of temperatures included in the 2006 interlaboratory cooperative test program only covered the temperature range of –35 °C to +12 °C. See Section 13.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The presence and concentration of total oil and grease as well as total petroleum hydrocoarbons, in domestic and industrial wastewater is of concern to the public because of its deleterious aesthetic effect and its impact on aquatic life.5.2 Regulations and standards have been established that require monitoring of total oil and grease as well as total petroleum hydrocarbons in water and wastewater.1.1 This test method covers the determination of total oil and grease (TOG) and total petroleum hydrocarbons (TPH) in water and waste water that are extractable by this test method from an acidified sample with a cyclic aliphatic hydrocarbon (for example cyclohexane, cyclopentane) and measured by IR absorption in the region from 1370 cm–1 to 1380 cm–1 (7.25 μm to 7.30 μm) using a mid-IR laser spectrometer. Polar substances are removed by clean-up with Florisil.21.2 This test method also considers the volatile fraction of petroleum hydrocarbons, which is lost by gravimetric methods that require solvent evaporation prior to weighing, as well as by solvent-less IR methods that require drying of the employed solid phase material prior to measurement. Similarly, a more complete fraction of extracted petroleum hydrocarbons are accessible by this test method as compared to GC methods that use a time window for quantification, as petroleum hydrocarbons eluting outside these windows are quantified too.1.3 This test method covers the range of 0.1 mg/L to 1000 mg/L and may be extended to a lower or higher level by extraction of a larger or smaller sample volume collected separately.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice allows for compositional analysis of the gases in equilibrium with crude oil, condensate, and liquid petroleum products at a 4:1 vapor/liquid ratio at ambient temperature for analysis using typical instrumentation (RGA) already available in typical refinery laboratories. These highly volatile components can result in vapor pressure conditions above atmospheric pressure, so this mechanically simple system is easily adaptable to day-to-day application at low cost/effort using existing analytical equipment.5.2 This practice allows for compositional analysis and day-to-day tracking or trending of the light hydrocarbons in crude oil for the purpose of identifying unusual blending of NGL, LPG, butane etc. into individual crude oil batch receipts.5.3 This practice allows identification of gases: including: CO, CO2, H2, H2S, N2, O2, CH4, C2H6, C3H8, etc. that can contribute to vapor pressure by Test Method D6377, but are not identified using Test Method D8003 (see Note 1). These components can originate from production or can be the result of the use of pad gas and may not be native to the original product. Significant difference in Test Method D6377 vapor pressure measurements at low V/L (for example, 0.1:1) versus high V/L (for example, 4:1) indicate the contribution of high vapor pressure gases such as those in 5.2.NOTE 1: Test Method D8003 does identify: CH4, C2H6, and C3H8. Test Method D8003 does not identify: CO, CO2, H2, H2S, N2, and O2.5.4 Nitrogen and combustion gases (mostly nitrogen and CO2 with minor concentrations of air) at positive pressures up to 2500 mm water column (nominal 4 psig) is required by International Marine Organization (IMO) Marine Pollution (MARPOL) and Safety of Life at Sea (SOLAS) regulations for the marine transport of crude oil. Analysis of the equilibrium vapor may be required to determine the contribution of inert gases to the total vapor pressure of the crude oil on receipt at the discharge port or refinery.1.1 This practice covers the preparation of an equilibrium gas sample of live crude oil, condensate, or liquid petroleum products, using a Practice D8009 manual piston cylinder (MPC) as a vapor tight expansion chamber to generate an equilibrium vapor/liquid pair at a known temperature and vapor/liquid ratio (V/L). Inert gas such as helium or argon is injected to the equilibrium vapor space of the MPC to provide an equilibrium vapor sample sufficiently above atmospheric pressure for subsequent analysis using a standard refinery gas analyzer (RGA) such as described in Test Method D7833. Other gas analysis methods may be used provided they meet the minimum performance criteria stated in 7.4.1.1.2 This practice is suitable for UN Class 3 Liquid samples having vapor pressures between 0 kPa and 300 kPa at 50.0 °C, and 0.1:1 to 4:1 vapor/liquid ratio, spanning the nominal range near bubble point (Test Method D6377 VPCr,0.1) to Test Methods D323 (RVP), D4953, and D5191 (V/L=4). The temperature may vary over a wide range, provided that the cylinder is maintained at isothermal and isobaric conditions to prevent condensation of equilibrium vapor upon cooling either in the cylinder or in the injection system of the Refinery Gas Analyzer (RGA, Test Method D7833). The method is best suited for preparation of an equilibrium gas/liquid pair near ambient conditions, typical of routine daily operations in a typical refinery quality assurance or marine terminal laboratory, to routinely monitor the light ends content of crude oil receipts.1.3 This practice is suitable to prepare an equilibrium liquid/vapor sample pair in a sealed sampling system (no light ends loss from either phase). The equilibrium gas phase is suitable for subsequent gas analysis of both hydrocarbon and fixed/inert gases in the sample, including: hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, C1 to C7 hydrocarbons at levels consistent with the Test Method D7833 method used. The equilibrium liquid phase can be subsequently analyzed by Test Method D8003 to obtain paired analytical results on both the equilibrium liquid and vapor pair with a sealed sample system.1.4 Addition of the diluent gas provides a positive pressure sample to allow the use of a typical RGA-type gas injection system that operates only slightly above barometric pressure. The preferred diluent gas shall be the same as the carrier gas used in the RGA (typically helium or argon). Choice of diluent or carrier gas may affect the ability to detect some inert gases (especially O2 or H2) in some RGA configurations conforming to Test Method D7833.1.5 The VLE gas generation and subsequent RGA output is used as a screening method to identify gas components that can be present in the crude oil affecting the total vapor pressure. The RGA output only represents the equilibrium vapor components present and relative to one another. Due to dilution of the VLE gas with inert gas, the RGA output does not purport to accurately provide the actual vapor composition at VLE conditions and is definitely not representative of the composition of the whole sample.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
398 条记录,每页 15 条,当前第 14 / 27 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页