微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Soil placed as engineering fill (embankments, foundation pads, road bases) is compacted to a dense state to obtain satisfactory engineering properties such as, shear strength, compressibility, or permeability. In addition, foundation soils are often compacted to improve their engineering properties. Laboratory compaction tests provide the basis for determining the percent compaction and molding water content needed to achieve the required engineering properties, and for controlling construction to assure that the required compaction and water contents are achieved.5.2 During design of an engineered fill, shear, consolidation, permeability, or other tests require preparation of test specimens by compacting at some molding water content to some unit weight. It is common practice to first determine the optimum water content (wopt) and maximum dry unit weight (γd,max) by means of a compaction test. Test specimens are compacted at a selected molding water content (w), either wet or dry of optimum (wopt) or at optimum (wopt), and at a selected dry unit weight related to a percentage of maximum dry unit weight (γd,max). The selection of molding water content (w), either wet or dry of optimum (wopt) or at optimum (wopt) and the dry unit weight (γd,max) may be based on past experience, or a range of values may be investigated to determine the necessary percent of compaction.5.3 Experience indicates that the methods outlined in 5.2 or the construction control aspects discussed in 5.1 are extremely difficult to implement or yield erroneous results when dealing with certain soils. 5.3.1 – 5.3.3 describe typical problem soils, the problems encountered when dealing with such soils and possible solutions for these problems.5.3.1 Oversize Fraction—Soils containing more than 30 % oversize fraction (material retained on the 3/4-in. (19-mm) sieve) are a problem. For such soils, there is no ASTM test method to control their compaction and very few laboratories are equipped to determine the laboratory maximum unit weight (density) of such soils (USDI Bureau of Reclamation, Denver, CO and U.S. Army Corps of Engineers, Vicksburg, MS). Although Test Methods D4914/D4914M and D5030/D5030M determine the “field” dry unit weight of such soils, they are difficult and expensive to perform.5.3.1.1 One method to design and control the compaction of such soils is to use a test fill to determine the required degree of compaction and the method to obtain that compaction, followed by use of a method specification to control the compaction. Components of a method specification typically contain the type and size of compaction equipment to be used, the lift thickness, acceptable range in molding water content, and the number of passes.NOTE 3: Success in executing the compaction control of an earthwork project, especially when a method specification is used, is highly dependent upon the quality and experience of the contractor and inspector.5.3.1.2 Another method is to apply the use of density correction factors developed by the USDI Bureau of Reclamation (2, 3) and U.S. Corps of Engineers (4). These correction factors may be applied for soils containing up to about 50 to 70 % oversize fraction. Each agency uses a different term for these density correction factors. The USDI Bureau of Reclamation uses D ratio (or D–VALUE), while the U.S. Corps of Engineers uses Density Interference Coefficient (Ic).5.3.1.3 The use of the replacement technique (Test Method D698–78, Method D), in which the oversize fraction is replaced with a finer fraction, is inappropriate to determine the maximum dry unit weight, γd,max, of soils containing oversize fractions (4).5.3.2 Degradation—Soils containing particles that degrade during compaction are a problem, especially when more degradation occurs during laboratory compaction than field compaction, as is typical. Degradation typically occurs during the compaction of a granular-residual soil or aggregate. When degradation occurs, the maximum dry-unit weight increases (1, p. 73) so that the laboratory maximum value is not representative of field conditions. Often, in these cases, the maximum dry unit weight is impossible to achieve in the field.5.3.2.1 Again, for soils subject to degradation, the use of test fills and method specifications may help. Use of replacement techniques is not correct.5.3.3 Gap Graded—Gap-graded soils (soils containing many large particles with limited small particles) are a problem because the compacted soil will have larger voids than usual. To handle these large voids, standard test methods (laboratory or field) typically have to be modified using engineering judgement.NOTE 4: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These test methods cover laboratory compaction methods used to determine the relationship between molding water content and dry unit weight of soils (compaction curve) compacted in a 4 or 6-in. (101.6 or 152.4-mm) diameter mold with a 5.50-lbf (24.5-N) rammer dropped from a height of 12.0 in. (305 mm) producing a compactive effort of 12 400 ft-lbf/ft3 (600 kN-m/m3).NOTE 1: The equipment and procedures are similar as those proposed by R. R. Proctor (Engineering News Record—September 7, 1933) with this one major exception: his rammer blows were applied as “12 inch firm strokes” instead of free fall, producing variable compactive effort depending on the operator, but probably in the range 15 000 to 25 000 ft-lbf/ft3 (700 to 1200 kN-m/m3). The standard effort test (see 3.1.4) is sometimes referred to as the Proctor Test.1.1.1 Soils and soil-aggregate mixtures are to be regarded as natural occurring fine- or coarse-grained soils, or composites or mixtures of natural soils, or mixtures of natural and processed soils or aggregates such as gravel or crushed rock. Hereafter referred to as either soil or material.1.2 These test methods apply only to soils (materials) that have 30 % or less by mass of particles retained on the 3/4-in. (19.0-mm) sieve and have not been previously compacted in the laboratory; that is, do not reuse compacted soil.1.2.1 For relationships between unit weights and molding water contents of soils with 30 % or less by mass of material retained on the 3/4-in. (19.0-mm) sieve to unit weights and molding water contents of the fraction passing 3/4-in. (19.0-mm) sieve, see Practice D4718/D4718M.1.3 Three alternative methods are provided. The method used shall be as indicated in the specification for the material being tested. If no method is specified, the choice should be based on the material gradation.1.3.1 Method A: 1.3.1.1 Mold—4-in. (101.6-mm) diameter.1.3.1.2 Material—Passing No. 4 (4.75-mm) sieve.1.3.1.3 Layers—Three.1.3.1.4 Blows per Layer—25.1.3.1.5 Usage—May be used if 25 % or less (see 1.4) by mass of the material is retained on the No. 4 (4.75-mm) sieve.1.3.1.6 Other Usage—If this gradation requirement cannot be met, then Method C may be used.1.3.2 Method B: 1.3.2.1 Mold—4-in. (101.6-mm) diameter.1.3.2.2 Material—Passing 3/8-in. (9.5-mm) sieve.1.3.2.3 Layers—Three.1.3.2.4 Blows per Layer—25.1.3.2.5 Usage—May be used if 25 % or less (see 1.4) by mass of the material is retained on the 3/8-in. (9.5-mm) sieve.1.3.2.6 Other Usage—If this gradation requirement cannot be met, then Method C may be used.1.3.3 Method C: 1.3.3.1 Mold—6-in. (152.4-mm) diameter.1.3.3.2 Material—Passing 3/4-in. (19.0-mm) sieve.1.3.3.3 Layers—Three.1.3.3.4 Blows per Layer—56.1.3.3.5 Usage—May be used if 30 % or less (see 1.4) by mass of the material is retained on the 3/4-in. (19.0-mm) sieve.1.3.4 The 6-in. (152.4-mm) diameter mold shall not be used with Method A or B.NOTE 2: Results have been found to vary slightly when a material is tested at the same compactive effort in different size molds, with the smaller mold size typically yielding larger values of density/unit weight (1, pp. 21+).21.4 If the test specimen contains more than 5 % by mass of oversize fraction (coarse fraction) and the material will not be included in the test, corrections must be made to the unit mass and molding water content of the specimen or to the appropriate field-in-place density test specimen using Practice D4718/D4718M.1.5 This test method will generally produce a well-defined maximum dry unit weight for non-free draining soils. If this test method is used for free-draining soils the maximum unit weight may not be well defined, and can be less than obtained using Test Methods D4253.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.6.1 For purposes of comparing measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.6.2 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.7 The values in inch-pound units are to be regarded as the standard. The values stated in SI units are provided for information only, except for units of mass. The units for mass are given in SI units only, g or kg.1.7.1 It is common practice in the engineering profession to concurrently use pounds to represent both a unit of mass (lbm) and a force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. This standard has been written using the gravitational system of units when dealing with the inch-pound system. In this system, the pound (lbf) represents a unit of force (weight). However, the use of balances or scales recording pounds of mass (lbm) or the recording of density in lbm/ft3 shall not be regarded as a nonconformance with this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Soil toxicity tests provide information concerning the toxicity and bioavailability of chemicals associated with soils to terrestrial organisms. As important members of the soil fauna, lumbricid earthworms and enchytraeid potworms have a number of characteristics that make them appropriate organisms for use in the assessment of potentially hazardous soils. Earthworms may ingest large quantities of soil, have a close relationship with other soil biomasses (for example, invertebrates, roots, humus, litter, and microorganisms), constitute up to 92 % of the invertebrate biomass of soil, and are important in recycling nutrients (1, 2).4 Enchytraeids contribute up to 5.2 % of soil respiration, constitute the second-highest biomass in many soils (the highest in acid soils in which earthworms are lacking) and effect considerably nutrient cycling and community metabolism (3-5). Earthworms and potworms accumulate and are affected by a variety of organic and inorganic compounds (2-10, 11-14). In addition, earthworms and potworms are important in terrestrial food webs, constituting a food source for a very wide variety of organisms, including birds, mammals, reptiles, amphibians, fish, insects, nematodes, and centipedes (15, 16, 3). A major change in the abundance of soil invertebrates such as lumbricids or enchytraeids, either as a food source or as organisms functioning properly in trophic energy transfer and nutrient cycling, could have serious adverse ecological effects on the entire terrestrial system.5.2 A number of species of lumbricids and enchytraeid worms have been used in field and laboratory investigations in the United States and Europe. Although the sensitivity of various lumbricid species to specific chemicals may vary, from their study of four species of earthworms (including E. fetida) exposed to ten organic compounds representing six classes of chemicals, Neuhauser, et al (7) suggest that the selection of earthworm test species does not affect the assessment of a chemical's toxicity markedly. The sensitivity of various enchytraeid species has not been investigated in a comparable way so far, but ecological importance and practicability reasons favor strongly the selection of a species belonging to the genus Enchytraeus.5.2.1 E. fetida is a species whose natural habitats are those of very high organic matter such as composts and manure piles. It was selected as the test species because it (1) is bred in the laboratory easily; (2) is the earthworm species used most commonly in laboratory experiments (17); (3) has been studied extensively, producing a data pool on the toxicity and bioaccumulation of a variety of compounds (2, 7, 8, 18-23); (4) has been approved for use in toxicity testing by the European Union (EU) and the Organization for Economic Cooperation and Development (OECD); and (5) has been used by the Environmental Protection Agency (EPA) for the toxicity screening of hazardous waste sites (24).5.2.2 The recommended enchytraeid test species is Enchytraeus albidus Henle 1837 (white potworm). E. albidus is one of the biggest (up to 15 mm) species of the oligochaete family Enchytraeidae and it is distributed world-wide (25, 26). E. albidus is found in marine, limnic, and terrestrial habitats, mainly in decaying organic matter (seaweed, compost) and rarely in meadows (4, 26). This broad ecological tolerance and some morphological variations might indicate that there are different races for this species. E. albidus is commercially available, sold as food for fish, can be bred easily in a wide range of organic waste materials and has a short life cycle (33 to 74 days; 27, 28). E. albidus was studied in various tests, which covered a wide range of compounds (28-30). In addition, it is currently under investigation for use in toxicity testing and soil quality assessment by the European Union (EU), the Organization for Economic Cooperation and Development (OECD), and the International Organization for Standardization (ISO). Other species of the genus Enchytraeus are also suitable, for example, E. buchholzi Vejdovsky 1879 or E. crypticus Westheide and Graefe 1992 (see Annex A4). Those species are true soil inhabitants and are smaller in size. Other species of Enchytraeus may be used, but they should be identified clearly and the rationale for their selection should be reported.5.3 Results from soil toxicity tests might be an important consideration when assessing the hazards of materials to terrestrial organisms.5.4 Information might also be obtained on the bioaccumulation of chemicals associated with soil by analysis of animal tissues for the chemicals being monitored. These results are useful for studying the biological availability of chemicals.5.5 The soil toxicity test might be used to determine the temporal or spatial distribution of soil toxicity. Test methods can be used to detect horizontal and vertical gradients in toxicity.5.6 Results of soil toxicity tests could be used to compare the sensitivities of different species.5.7 An understanding of the effect of these parameters on toxicity and bioaccumulation may be gained by varying soil characteristics such as pH, clay content, and organic material.5.8 Results of soil toxicity tests may be useful in helping to predict the effects likely to occur with terrestrial organisms in field situations.5.8.1 Field surveys can be designed to provide either a qualitative or quantitative evaluation of biological effects within a site or among sites.5.8.2 Soil surveys evaluating biological effects are usually part of more comprehensive analyses of biological, chemical, geological, and hydrographic conditions. Statistical correlation can be improved and costs reduced if subsamples of soil for laboratory toxicity tests, geochemical analyses, and community structure are taken simultaneously from the same grab of the same site.5.9 Soil toxicity and bioaccumulation tests can be an important tool for making decisions regarding the extent of remedial action necessary for contaminated terrestrial sites.1.1 This guide covers procedures for obtaining laboratory data to evaluate the adverse effects of contaminants (for example, chemicals or biomolecules) associated with soil to earthworms (Family Lumbricidae) and potworms (Family Enchytraeidae) from soil toxicity or bioaccumulation tests. The methods are designed to assess lethal or sublethal toxic effects on earthworms or bioaccumulation of contaminants in short-term tests (7 to 28 days) or on potworms in short to long-term tests (14 to 42 days) in terrestrial systems. Soils to be tested may be (1) reference soils or potentially toxic site soils; (2) artificial, reference, or site soils spiked with compounds; (3) site soils diluted with reference soils; or (4) site or reference soils diluted with artificial soil. Test procedures are described for the species Eisenia fetida (see Annex A1) and for the species Enchytraeus albidus (see Annex A4). Methods described in this guide may also be useful for conducting soil toxicity tests with other lumbricid and enchytraeid terrestrial species, although modifications may be necessary.1.2 Modification of these procedures might be justified by special needs. The results of tests conducted using atypical procedures may not be comparable to results using this guide. Comparison of results obtained using modified and unmodified versions of these procedures might provide useful information concerning new concepts and procedures for conducting soil toxicity and bioaccumulation tests with terrestrial worms.1.3 The results from field-collected soils used in toxicity tests to determine a spatial or temporal distribution of soil toxicity may be reported in terms of the biological effects on survival or sublethal endpoints (see Section 14). These procedures can be used with appropriate modifications to conduct soil toxicity tests when factors such as temperature, pH, and soil characteristics (for example, particle size, organic matter content, and clay content) are of interest or when there is a need to test such materials as sewage sludge and oils. These methods might also be useful for conducting bioaccumulation tests.1.4 The results of toxicity tests with (1) materials (for example, chemicals or waste mixtures) added experimentally to artificial soil, reference soils, or site soils, (2) site soils diluted with reference soils, and (3) site or reference soils diluted with artificial soil, so as to create a series of concentrations, may be reported in terms of an LC50 (median lethal concentration) and sometimes an EC50 (median effect concentration). Test results may be reported in terms of NOEC (no observed effect concentration), LOEC (lowest observed effect concentration) or as an ECx (concentration where x % reduction of a biological effect occurs. Bioaccumulation test results are reported as the magnitude of contaminant concentration above either the Day 0 tissue baseline analysis or the Day 28 tissues from the negative control or reference soil (that is, 2x, 5x, 10x) (see A3.9).1.5 This guide is arranged as follows:   1  Referenced Documents  2  Terminology  3  Summary of Guide  4   5  Interferences  6  Apparatus  7  Safety Precautions  8  Soil  9  Test Organism 10  Procedure 11  Analytical Methodology 12  Acceptability of Test 13  Calculation of Results 14  Report 15  Annexes     Annex A1. Eisenia fetida     Annex A2. Artificial Soil Composition     Annex A3. Bioaccumulation Testing Utilizing Eisenia fetida   Annex A4. Enchytraeid Reporduction Test (ERT)  References  1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. While some safety considerations are included in this guide, it is beyond the scope of this standard to encompass all safety requirements necessary to conduct soil toxicity tests. Specific precautionary statements are given in Section 8.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

This specification covers hubless cast iron soil pipe and fittings for use in gravity flow applications. These pipe and fittings are intended for non-pressure applications, as the selection of the proper size for sanitary drain, waste, vent, and storm drain systems allows free air space for gravity drainage. The pipe and fittings shall be iron castings suitable for installation and service for sanitary, storm drain, waste, and vent piping applications. The pipe and fittings shall meet all applicable requirements and tests given in this specification. Tensile test and chemical test shall be made to conform to the requirements specified. The pipe and fittings shall be uniformly coated with a material suitable for the purpose that is adherent, not brittle, and without a tendency to scale.1.1 This specification covers hubless cast iron soil pipe and fittings for use in gravity flow applications. It establishes standards covering material, manufacture, mechanical and chemical properties, dimensions, coating, test methods, inspection, certification, and product marking for hubless cast iron soil pipe and fittings. These pipe and fittings are intended for non-pressure applications, as the selection of the proper size for sanitary drain, waste, vent, and storm drain systems allows free air space for gravity drainage.1.2 The EDP/ASA numbers indicated in this section represent a Uniform Industry Code adopted by the American Supply Association (ASA). A group designation prefix, 022, is assigned to hubless products, followed by the four-digit identification assigned to individual items and a check digit. This system has been instituted to facilitate EDP control through distribution channels, and is to be used universally in ordering and specifying product items. Those items with no EDP numbers are either new, special, or transitory and will be assigned numbers on subsequent prints of this specification.1.3 This specification covers pipe and fittings of the following patterns and applies to any other patterns that conform with the dimensions found in Tables 1 and 2 and all other applicable requirements given in this specification.21.3.1 Lengths:  FiguresEDP/ASA Identification Numbersfor Hubless Pipe Fig. 110 ft (3.0 m) in sizes and 5 ft. (1.5 m)11/2 , 2, 3, 4, 5, 6, 8,10, 12, and 15 in. Fig. 1, Fig. 2Method of Specifying Fittings Fig. 31.3.2 Fittings: Quarter Bend Fig. 5Quarter Bend, Reducing Fig. 6Quarter Bend, with Side Opening Fig. 7Quarter Bend, with Heel Opening Fig. 8Quarter Bend, Tapped Fig. 9Quarter Bend, Double Fig. 10Quarter Bend, Long Fig. 11Short Sweep Fig. 12Long Sweep Fig. 13Long Sweep, Reducing Fig. 14Fifth Bend Fig. 15Sixth Bend Fig. 16Eighth Bend Fig. 17Eighth Bend, Long Fig. 18Sixteenth Bend Fig. 19Sanitary Tee Fig. 20Sanitary Tee with Side Opening Fig. 21Sanitary Tee with 2 in. Side Opening R or L/R and L Fig. 22Sanitary Tee, New Orleans Special with Side Opening Fig. 23Sanitary Tee with 45° Side Openings and New Orleans Fig. 24Sanitary Special Tee Tapped Fig. 25Sanitary Tapped Tee, Horizontal Twin Fig. 26Sanitary Tapped Tee, Double Vertical Fig. 27Y Branch Fig. 28Y Branch, Double Fig. 29Y Branch, Upright Fig. 30Upright Y Wide Center Florida Special Fig. 31Y Branch, Combination 1/8 Bend Fig. 32Y Branch, Combination 1/8 Bend Double Fig. 33Sanitary Cross Fig. 34Sanitary Cross with Side Opening Fig. 35Sanitary Cross, New Orleans, with Side Openings Fig. 36Sanitary Cross, New Orleans, with 45° Special and Regular Side Openings Fig. 37Sanitary Cross, Tapped Fig. 38Test Tee Fig. 39Tapped Extension Piece Fig. 40Increaser-Reducer Fig. 41Increaser-Reducer, Short Fig. 42Tapped Adapter Fig. 43Blind Plug Fig. 44Iron Body Cleanout, Tapped Fig. 45P Trap Fig. 46P Trap, Long Fig. 47P Trap, Deep Seal Fig. 48P Trap, with Primer Fig. 49P Trap, with Tapped Inlet Fig. 50Tapped Inlet, Double Fig. 51Modified Combination Wye and 1/8  Bend, Double Fig. 52Modified Combination Wye and 1/8  Bend, Double, Extended Fig. 53Two-Way Cleanout Fig. 54Twin Cleanout Fig. 55Closet Bend, Regular and Reducing Fig. 56Closet Flange Riser Fig. 57Tapping Bosses Fig. 58Double Sweep Sanitary Tee (Extended) Fig. 59Running Trap with Double Vents Fig. 60P Trap with Tapped or Hubless Side Inlet Fig. 61Vented Tub Wye Extended, Double Fig. 62Vented Tub Wye Extended Offset, Left or Right Fig. 63Vented Tub Wye Fig. 64Double Two-Way Cleanout Fig. 651.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 The committee with jurisdiction over this standard is aware of another comparable standard published by the Cast Iron Soil Pipe Institute, CISPI 301.NOTE 1: The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏
ASTM D3155-11 Standard Test Method for Lime Content of Uncured Soil-Lime Mixtures (Withdrawn 2020) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

This test method can be used to determine the lime content of uncured soil-lime mixtures.Lime content in soil-lime mixtures is needed by agencies such as highway departments, to determine lime content in soil-lime mixtures for payments to contractors, to check compliance with specifications, or to check the efficacy of quality control measures.Lime content is also needed by producers of soil-lime mixtures who have to determine lime content for production control purposes.Note 1—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the lime content of soil-lime mixtures sampled from a project under construction or at the pug-mill, or both.1.2 In soils with highly variable amounts of CaCo3 (such as caliche), it may be difficult to obtain a representative sample.1.3 The values stated in SI units are to be regarded as standard. The values stated in inch-pound units are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method covers the standard material criteria and test method for compression gaskets used in joining hub and spigot cast iron soil pipe and fittings for sanitary drain, waste, vent, and storm piping applications. The gaskets shall be made of a compound containing a thermoset elastomer and shall consist of one or more sealing ring(s) that compress to provide an airtight and watertight seal. Compression gaskets shall have an integral flange to prevent the gasket from rolling into the hub during installation and shall be designed to permit expansion, contraction, and deflection of assembled piping. The gaskets shall be restrained and subjected to hydrostatic pressure and the joint assembly performance shall be evaluated using the restrained hydrostatic joint testing apparatus wherein a water pressure gauge is used to ensure the accuracy of the test pressures.1.1 Several different types of compression gaskets are available for use in connection with hub and spigot cast iron soil pipe and fittings. The purpose of this test method is to establish material criteria and test procedures for compression gaskets used in joining hub and spigot cast iron soil pipe and fittings for sanitary drain, waste, vent, and storm drain piping applications in accordance with the general needs of producers, distributors, and users.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is performance oriented for determining if, and to what degree, different liquids create biological activity on geotextile filters thereby reducing their flow capability. The use of the method is primarily oriented toward landfill leachates but can be performed with any liquid coming from a particular site or synthesized from a predetermined mixture of biological microorganisms.5.2 The test can be used to compare the flow capability of different types of geotextiles, drainage geocomposite, or soil/geotextile combinations.5.3 This test will usually take considerable time, for example, up to 1000 h, for the biological activity to initiate, grow, and reach an equilibrium condition. The curves resulting from the test are intended to indicate the in-situ behavior of a geotextile or soil/geotextile filter.5.4 The test specimen can be incubated under unsaturated drained conditions between readings, or kept saturated at all times. The first case allows for air penetration into the flow column and thus aerobic conditions. The second case can result in the absence of air; thus it may simulate anaerobic conditions.5.5 The flow rate can be determined using either a constant head test procedure or on the basis of a falling head test procedure. In either case, the flow column containing the geotextile or soil/geotextile is the same; only the head control devices change.NOTE 1: It has been found that once biological clogging initiates, constant head tests often pass inadequate quantities of liquid to accurately measure. It thus becomes necessary to use falling head tests, which can be measured based on time of movement of a relatively small quantity of liquid between two designated points on a clear plastic standpipe.5.6 If the establishment of an unacceptably high degree of clogging is seen in the flow rate curves, the device allows for back flushing with water or with water containing a biocide.5.7 The resulting flow rate curves are intended for use in the design of full-scale geotextile, drainage geocomposite, or soil/geotextile filtration systems and possible remediation schemes in the case of landfill leachate collection and removal systems.1.1 This test method is used to determine the potential for, and relative degree of, biological growth which can accumulate on geotextile, drainage geocomposites, or geotextile/soil filters.1.2 This test method uses the measurement of flow rates over an extended period of time to determine the amount of clogging.1.3 This test method can be adapted for unsaturated as well as saturated conditions.1.4 This test method can use constant head or falling head measurement techniques.1.5 This test method can also be used to give an indication as to the possibility of back flushing, biocide treatment, or both, for remediation purposes if biological clogging does occur.1.6 The values in SI units are to be regarded as the standard. The values provided in inch-pound units are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The purpose of this practice is to prepare specimens of chemically grouted soils for testing in unconfined or triaxial compression.Note 3—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice covers the laboratory preparation of chemically grouted soil specimens for use in laboratory tests to determine engineering parameters.Note 1—This practice may not be applicable to grout mixtures with gel times shorter than the time required to saturate the specimen with grout.1.2 The specimens are intended for both strength and modulus determination in unconfined and confined compression testing.Note 2—Preparation methods for specimens to be used for other purposes are described in Test Methods D4219 and D5202.1.3 This practice requires the injection of grout into soil specimens already fabricated to a desired density.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.5 The values stated in either SI units or inch-pound units [presented in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The slug unit is not given, unless dynamic (F = ma) calculations are involved.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This practice covers procedures for estimating the dimensions and marking the boundaries of a soil absorption area for an on-site septic system involving residential-strength wastewater. It can also be used to estimate the dimensions of commercial on-site septic systems where wastewater strengths are similar to residential wastewater. 1.2 This practice can also be used for marking the boundaries of the area for a septic system construction filter bed. 1.3 This practice can be used at any site where a potentially suitable or recommended field area has been identified in accordance with Practices D 5879 and D 5921. 1.4 Non-metric units remain the common practice in design and installation of on-site waste disposal systems, and are used in this practice. Use of SI units given in parentheses is encouraged, if acceptable to the appropriate permitting agency. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method determines cement content in mixtures of cement with soil or aggregate by chemical analysis. It was developed primarily for testing samples for which a significant degree of cement hydration or hardening has taken place. Test Methods D2901 or D5982 may be used for determining cement content of freshly mixed soil-cement mixtures.5.2 This test method is based on determination by chemical analysis of the calcium oxide (CaO) content of the sample. The method may not be applicable to soil-cement materials containing soils or aggregates which yield significant amounts of dissolved calcium oxide (CaO) under the conditions of the test.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing and sampling. Users of this standard are cautioned the compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors: Practice D3740 provides a means of evaluating some of these factors.NOTE 2: Analysis using X-ray fluorescence in accordance with C114 may also be used for determination of calcium oxide (CaO) content of hardened soil-cement.1.1 This test method covers the determination by chemical analysis of cement content of hardened soil-cement mixtures.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 For purposes of comparing a measured or calculated value(s) with the specific limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specific limits.1.3.2 The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for the engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard precautions, see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide is intended to assist users and producers of soil modifiers, and stabilizers in the evaluation of a product's potential for improving a soil's engineering properties (such as deformation under load, shear strength, and volume stability).The results of these tests can be used to make a decision to continue experimentation to assess longevity, durability, and practical value, and establish appropriate rates of application for field trials.Note 1—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice D 3740 does not in itself assure reliable results. Reliable results depend on many factors. Practice D 3740 provides a means of evaluating some of those factors.1.1 This guide describes laboratory techniques for evaluating the effectiveness of admixtures for improving the engineering properties of fine-grained soils.1.2 Effectiveness is assessed by comparing the unconfined compressive strength (UCS), moisture susceptibility, and moisture-density relationships (MD) of treated and untreated soils.1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Elemental species such as Cr, Ni, As, Cd, Hg, and Pb are widely used in many industrial processes. These elements have been identified in many former industrial sites driving the need for a quick, easy method for testing on-site at trace levels in soil and solid waste matrices.5.2 This method may be used for quantitative determinations of Cr, Ni, As, Cd, Hg, and Pb in soil matrices and solid waste. Typical test time is 90 seconds to 15 minutes.1.1 This test method is based upon energy-dispersive X-ray Fluorescence (EDXRF) spectrometry using multiple monochromatic excitation beams for detection and quantification of selected heavy metal elements in soil and related solid waste.1.2 This test method is also known as High Definition X-ray Fluorescence (HDXRF) or Multiple Monochromatic Beam EDXRF (MMB-EDXRF).1.3 This test method is applicable to various soil matrices for the determination of Cr, Ni, As, Cd, Hg, and Pb in the range of 1 to 5000 mg/kg, as specified in Table 1 and determined by a ruggedness study using representative samples. The limit of detection (LOD) for each element is listed in Table 1. The LOD is estimated by measuring a SiO2 blank sample (see Table X1.1 in Appendix X1).1.4 This test method is applicable to other elements: Sb, Cu, Se, Ag, Tl, Zn, Ba, Au, Co, V, Fe, Mn, Mo, K, Rb, Sn, Sr, and Ti.1.5 X-ray Nomenclature—This standard names X-ray lines using the Siegbahn convention.21.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 TDG is a Schedule 2 compound under the Chemical Weapons Convention (CWC). Schedule 2 chemicals include those that are precursors to chemical weapons, chemical weapons agents, or have a number of other commercial uses. They are used as ingredients to produce insecticides, herbicides, lubricants, and some pharmaceutical products. Schedule 2 chemicals can be found in applications unrelated to chemical weapons. TDG is both a mustard gas precursor and a degradant as well as an ingredient in water-based inks, ballpoint pen inks, dyes, and some pesticides.55.2 This method has been investigated for use with soil.1.1 This procedure covers the determination of thiodiglycol (TDG) in soil using pressurized fluid extraction (PFE). A commercially available PFE system2 is used, followed by analysis using liquid chromatography (LC), and detected with tandem mass spectrometry (MS/MS). TDG is qualitatively and quantitatively determined by this method. This method adheres to single reaction monitoring (SRM) mass spectrometry.1.2 The method detection limit (MDL) and reporting range for TDG are listed in Table 1.1.2.1 The MDL is determined following the Code of Federal Regulations, 40 CFR Part 136, Appendix B.1.2.2 The reporting limit (RL) is calculated from the concentration of the Level 1 calibration standard as shown in Table 4. The RL for this method is 200 ppb. Reporting range concentrations are calculated from Table 4 concentrations assuming a 5 μL injection of the lowest level calibration standard, 5 g sample, and a 2 mL final extract volume.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
312 条记录,每页 15 条,当前第 21 / 21 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页