微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers standard requirements for cold-formed welded and seamless high-strength, low-alloy round, square, rectangular, or special shaped structural tubing for welded, riveted, or bolted construction of bridges and buildings and for general structural purposes where high strength and enhanced atmospheric corrosion resistance are required. Round and shaped tubing shall meet the required tensile properties such as tensile strength, yield strength, and elongation. Heat and product analysis shall be performed wherein steel materials shall conform to the required chemical composition for carbon, manganese, phosphorus, sulphur, and copper. Outside dimension tolerances for square and rectangular tubing shall not exceed the specified plus and minus tolerances. Length tolerance for structural tubing shall be in accordance with the specified values. Twist tolerances for square and rectangular structural tubing shall be indicated.1.1 This specification covers cold-formed welded and seamless high-strength, low-alloy round, square, rectangular, or special tubular shapes for welded, riveted, or bolted construction of bridges and buildings and for general structural purposes where high strength and enhanced atmospheric corrosion resistance are required (Note 1). The atmospheric corrosion resistance of this steel in most environments is substantially better than carbon steel with or without copper addition (Note 2). When properly exposed to the atmosphere, this steel can be used bare (unpainted) for many applications. When this steel is used in welded construction, the welding procedure shall be suitable for the steel and the intended service.1.2 This tubing is produced in welded sizes with a maximum periphery of 88 in. [2235 mm] and a maximum wall of 1 in. [25.4 mm], and in seamless with a maximum periphery of 32 in. [813 mm] and a maximum wall of 0.500 in. [12.7 mm]. Tubing having other dimensions may be furnished provided such tubing complies with all other requirements of this specification.NOTE 1: Products manufactured to this specification may not be suitable for those applications where low temperature notch toughness properties may be important, such as dynamically loaded elements in welded structures, unless ordered with toughness tests. See the Supplementary Requirements.NOTE 2: For methods of estimating the atmospheric corrosion resistance of low alloy steels, see Guide G101 or actual data.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1  The rotating cage (RC) test system is relatively inexpensive and uses simple flat specimens that allow replicates to be run with each setup. (1-11).33.2 The RC method can be used to evaluate either corrosion inhibitors, or materials, or both. Practice G184 describes the procedure to use rotating cage to evaluate corrosion inhibitors.3.3 In this test method, a general procedure is presented to obtain reproducible results using RC to simulate the effects of different types of coupon materials, inhibitor concentrations, oil, gas and brine compositions, temperature, and flow. Oil field fluids may often contain sand; however, this test method does not cover erosive effects that occur when sand is present.1.1 This test method covers a generally accepted procedure to conduct the rotating cage (RC) experiment under atmospheric pressure.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers seamless carbon steel pipe intended primarily service at atmospheric and lower temperatures. The steel shall be killed steel made by one or more of the following processes: open-hearth, electric-furnace, or basic-oxygen. The steel shall be made to fine grain practice and may be cast in ingots or may be strand cast. All hot-finished and cold-drawn pipe shall be heat treated and be cooled in air or in the cooling chamber of a controlled atmosphere furnace. The steel shall be subjected to flattening, hydrostatic, bend, and tensile tests. A retest shall be conducted if a specimen breaks in an inside or outside surface flaw.1.1 This specification2 covers seamless carbon steel pipe intended primarily for service at atmospheric and lower temperatures, NPS 1/8 to 26 [DN 6 to 650] inclusive, with nominal (average) wall thickness as given in ANSI B36.10. Pipe having other dimensions may be furnished, provided such pipe complies with all other requirements of this specification. Pipe ordered to this specification shall be suitable both for welding, and for bending, flanging, and similar forming operations.1.2 The product is available in two grades (Tables 1 and 2).1.3 Product may be either of hot finished or cold drawn manufacture (see 5.1.4 and 5.1.5).1.4 Units—This specification is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.NOTE 1: The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as “nominal diameter,” “size,” and “nominal size.”1.5 The following hazard caveat applies to the test methods portion, Section 16, only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 General—This procedure is used for evaluation of the structural integrity of atmospheric storage tanks. The AE method can detect flaws which are in locations that are stressed during pressurization. Such locations include the tank wall, welds attaching pads to the tank, nozzle attachments, and welds attaching circumferential stiffeners to the tank. Among the potential sources of acoustic emission are:5.1.1 In both parent metal and weld associated regions:5.1.1.1 Cracks,5.1.1.2 The effect of corrosion, including cracking of corrosion products or local yielding,5.1.1.3 Stress corrosion cracking,5.1.1.4 Certain physical changes, including yielding and dislocations,5.1.1.5 Embrittlement, and5.1.1.6 Pits and gouges.5.1.2 In weld associated regions:5.1.2.1 Incomplete fusion,5.1.2.2 Lack of penetration,5.1.2.3 Undercuts, and5.1.2.4 Voids and porosity.5.1.2.5 Inclusions:5.1.2.6 Contamination.5.1.3 In parent metal:5.1.3.1 Laminations.5.1.4 In brittle linings:5.1.4.1 Cracks,5.1.4.2 Chips, and5.1.4.3 Inclusions.NOTE 1: Not all of these sources are typically encountered in field examination, some are detected under laboratory conditions.5.2 Accuracy of the results from this practice can be influenced by factors related to setup and calibration of instrumentation, background noise, material properties and characteristics of an examined structure.5.3 The outcome of this practice is to determine if the tank is suitable for service or if follow-up NDT is needed before that determination can be made.5.4 Unstressed Areas—Flaws in unstressed areas and passive flaws (those that are structurally insignificant under the applied load) will not generate AE. Such locations can include the roof and certain welds associated with platforms, ladders, and stairways.5.5 Passive Flaws (in Stressed Areas)—Some flaws in stressed areas might not generate acoustic emission during stressing. This usually means that the flaw has a higher stress tolerance than the examination stress.5.6 Filling—Filling proceeds at rates which minimize AE activity caused by fluid flow and which allow vessel deformation to be in equilibrium with applied load. Hold periods are used throughout the filling schedule to evaluate AE activity produced by the loaded structure in the absence of fill noise.5.7 Follow-up—Sources detected by AE should be examined using other NDT methods.5.8 Background Noise—Excess background noise may distort AE data or render them useless. Users must be aware of common sources of background noise: high fill rate (measurable flow noise), mechanical contact (impact, friction, fretting) with the tank by objects, electromagnetic interference (EMI) (motors, welders, overhead cranes) and radio frequency interference (RFI) (broadcasting facilities, walkie talkies), leaks at pipe or hose connections, leaks in the tank bottom or walls, airborne particles, insects, or rain drops, heaters, spargers, agitators, level detectors and other components inside the tank, chemical reactions occurring inside the tank, and hydrodynamic movement of gas bubbles. This practice should not be used if background noise cannot be eliminated or controlled.1.1 This practice covers guidelines for acoustic emission (AE) examinations of new and in-service aboveground storage tanks of the type used for storage of liquids.1.2 This practice will detect acoustic emission in areas of sensor coverage that are stressed during the course of the examination. For flat-bottom tanks these areas will generally include the sidewalls (and roof if pressure is applied above the liquid level). The examination may not detect flaws on the bottom of flat-bottom tanks unless sensors are located on the bottom.1.3 This practice may require that the tank experience a load that is greater than that encountered in normal use. The normal contents of the tank can usually be used for applying this load.1.4 This practice is not valid for tanks that will be operated at a pressure greater than the examination pressure.1.5 It is not necessary to drain or clean the tank before performing this examination.1.6 This practice applies to tanks made of carbon steel, stainless steel, aluminum and other metals.1.7 This practice may also detect defects in tank linings (for example, high-bulk, phenolics and other brittle materials).1.8 AE measurements are used to detect and localize emission sources. Other NDT methods may be used to confirm the nature and significance of the AE indications (s). Procedures for other NDT techniques are beyond the scope of this practice.1.9 Examination liquid must be above its freezing temperature and below its boiling temperature.1.10 Superimposed internal or external pressures must not exceed design pressure.1.11 Leaks may be found during the course of this examination but their detection is not the intention of this practice.1.12 Units—The values stated in either SI units or inch-pound units are to be regarded as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standards.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 Use of this practice will maximize the benefits to be gained from atmospheric testing of metallic-coated steel. It will also aid in comparing results from one location to another where similar tests have been conducted.1.1 This practice covers a procedure for recording data of atmospheric corrosion tests of metallic-coated steel specimens. Its objective is the assurance of (1) complete identification of materials before testing, (2) objective reporting of material appearance during visual inspections, and (3) adequate photographic, micrographic, and chemical laboratory examinations at specific stages of deterioration, and at the end of the tests.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers high-strength low-alloy structural steel plate used for tubular structures and poles. This steel has atmospheric corrosion resistance so it can be used bare or unpainted for many applications. The materials shall be made by fine grain practice, normal furnishing in the as-rolled condition, and normalizing heat treatment. Chemical requirements shall be obtained by heat analysis. Mechanical requirements shall be done by tension test and Charpy V-notch impact test.1.1 This specification covers high-strength low-alloy steel plate intended for use in tubular structures and poles or in other suitable applications. Two grades, 60 and 65, may be provided as-rolled, normalized or quenched and tempered as required to meet the specified mechanical requirements.1.2 The atmospheric corrosion resistance of this steel in most environments is substantially better than that of carbon structural steels with or without copper addition (see Note 1). When properly exposed to the atmosphere, this steel can be used bare (unpainted) for many applications.NOTE 1: For methods of estimating the atmospheric corrosion resistance of low-alloy steels, see Guide G101.1.3 When the steel is to be welded, it is presupposed that welding procedures suitable for the grade of steel and intended use or service will be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.4 Supplementary requirements in accordance with Specification A6/A6M are available, but shall apply only when specified by the purchaser at time of ordering.1.5 The values stated in either inch-pound units or SI units are to be regarded as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice covers the recommended method for rating the condition of electroplated test panels subjected to corrosive environments for test purposes. This method is used with standard-sized panels exposed on standard ASTM racks at outdoor test sites in both natural atmospheres and accelerated test conditions. This practice refers only to decorative-protective coatings that are cathodic to the substrate such as nickel/chromium or copper/nickel/chromium on steel or zinc die castings, and is not intended for use with anodic sacrificial coatings such as zinc and cadmium on steel. Any modifications needed to adapt the method to rating actual production parts are not considered here. Panels shall be assigned separate rating numbers based on the ability of the coating to protect the substrate from corrosion (protection rating), and the overall appearance of panels as affected by deterioration of the coating itself (appearance rating). Accordingly, rating numbers shall be derived from the type of defect that exists, that is: (1) protection defects, which include crater rusting, pinhole rusting, rust stains, blisters, and other defects that involve basis metal corrosion; and (2) appearance defects, which include surface pits, "crow's feet," crack patterns, surface stains, tarnishes, and other defects that detract from commercial acceptability as to appearance. Inspection should be made in the as-is condition, and defects to be taken into account are only those that can be seen with the unaided eye at normal reading distance.1.1 This practice covers a preferred method for evaluating the condition of electroplated test panels that have been exposed to corrosive environments for test purposes. It is based on experience in use of the method with standard 10- by 15-cm (4- by 6-in.) panels exposed on standard ASTM racks at outdoor test sites in natural atmospheres. It has been used also for rating similar panels that have been subjected to accelerated tests such as those covered by Practice B117, Method B287, Test Method B368, and Test Method B380. Any modifications needed to adapt the method to rating actual production parts are not considered in this practice.1.2 This practice refers only to decorative-protective coatings that are cathodic to the substrate, typified by nickel/chromium or copper/nickel/chromium on steel or zinc die castings. It is not intended for use with anodic sacrificial coatings such as zinc and cadmium on steel.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Applications—Ambient atmospheric temperature measurements can be made using resistance thermometers for many purposes. The application determines the most appropriate type of resistance thermometer and data recording method to be used. Examples of three typical meteorological applications for temperature measurements follow.4.1.1 Single-level, near-surface measurements for weather observations (1)3, thermodynamic computations for industrial applications, or environmental studies (2).4.1.2 Temperature differential or vertical gradient measurements to characterize atmospheric stability for atmospheric dispersion analyses studies (2).4.1.3 Temperature fluctuations for heat flux or temperature, or variance computations, or both. Measurements of heat flux and temperature variance require high precision measurements with a fast response to changes in the ambient atmosphere.4.2 Purpose—This practice is designed to assist the user in selecting an appropriate temperature measurement system for the intended atmospheric application, and properly installing and operating the system. The manufacturer's recommendations and the U.S. Environmental Protection Agency handbook on quality assurance in meteorological measurements (3) should be consulted for calibration and performance audit procedures.1.1 This practice provides procedures to measure representative near-surface atmospheric (outdoor air) temperature for meteorological purposes using commonly available electrical thermometers housed in radiation shields mounted on stationary or portable masts or towers.1.2 This practice is applicable for measurements over the temperature range normally encountered in the ambient atmosphere, –50 to +50 °C.1.3 Air temperature measurement systems include a radiation shield, resistance thermometer, signal cables, and associated electronics.1.4 Measurements can be made at a single level for various meteorological purposes, at two or more levels for vertical temperature differences, and using special equipment (at one or more levels) for fluctuations of temperature with time applied to flux or variance measurements.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Corrosion film growth with thicknesses varying from a monolayer of atoms up to 1 μm can readily be measured on a continuous, real-time, in-situ, basis with QCMs.4.2 The test results obtained for this test method are influenced by various factors, including geometrical effects, temperature, humidity, film thickness, film materials, electrode conditions, gases in the corrosion chamber, atmospheric pressure, and so forth. Calibration of coated crystals and instrumentation and reproducible crystal operating conditions are necessary for consistent results.1.1 This test method monitors the reactivity of a gaseous test environment in which metal surfaces (for example, electrical contacts, assembled printed wiring boards, and so forth) and other materials subject to pollutant gas attack undergo accelerated atmospheric corrosion testing. This test method is applicable to the growth of adherent corrosion films whose total corrosion film thickness ranges from a few atomic monolayers to approximately a micrometre.1.2 The test method provides a dynamic, continuous, in-situ, procedure for monitoring the corrosion rate in corrosion chambers; the uniformity of corrosion chambers; and the corrosion rate on different surfaces. Response time in the order of seconds is possible.1.3 With the proper samples, the quartz crystal microbalance (QCM) test method can also be used to monitor the weight loss from a surface as a result of the desorption of surface species (that is, reduction of an oxide in a reducing atmosphere). (Alternative names for QCM are quartz crystal oscillator, piezoelectric crystal oscillator, or thin-film evaporation monitor.)1.4 This test method is not sufficient to specify the corrosion process that may be occurring in a chamber, since a variety of pollutant gases and environments may cause similar weight gains.1.5 This test method is generally not applicable to test environments in which solid or liquid particles are deposited on the surface of the quartz crystal.1.6 The values stated in SI units are to be regarded as standard. The values in parentheses are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Electrical devices that contain electrical contacts generally contain some copper-based materials. Atmospheric corrosion of copper parts in such devices often occurs in service environments. A quantitative measure of the effect of a laboratory corrosion test on copper permits assessment of the severity of the test. In addition, corrosion tests may be defined in terms of their effect on copper; this test method provides a way of comparing one test against a standard defined elsewhere, or allows a comparison of the performance of a test over a period of time. Although this test method provides for a relatively simple check of a test, the user is advised that additional analysis of the test chamber ambient is generally required to reproduce test conditions.4.2 Atmospheric corrosion tests are used on a variety of materials besides copper. Care should be exercised in drawing conclusions about the effects on such materials of apparently equivalent tests if the composition of gases or experimental conditions are different. The primary use of this calibration test method is to assure correlation among nominally identical tests.1.1 This test method covers the calibration of atmospheric corrosion test chambers for electrical contacts that produce an adherent film of corrosion product on copper, such as a test comprised of a mixture of flowing gases that react with copper.1.2 This test method is not applicable to tests where corrosion products may be removed from a copper surface during the test by fluids.1.3 This test method is not applicable to tests where airborne solid or liquid material may be deposited on a copper surface during the test, as in a test which includes particulates suspended in the atmosphere.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The procedures described herein can be used to evaluate the corrosion resistance of metals when exposed to the weather, as well as to evaluate the relative corrosivity of the atmosphere at specific locations. Because of the variability and complexity of weather effects and the industrial and natural factors influencing the atmospheric corrosivity of a test site, a multi-year exposure period should be considered to minimize their influence. Also, as corrosivity may vary at a site from season to season, exposures should be made either at the same time of the year to minimize variability or these differences should be established by multiple exposures.3.2 Control specimens should always be employed in weathering tests. The control specimens should be from a material having established weathering characteristics. A substantial amount of corrosion data shall have been accumulated for the control specimens. It is also good practice to retain samples of all materials exposed so that possible effects of long-term aging can be measured.1.1 This practice covers and defines conditions for exposure of metals and alloys to the weather. It sets forth the general procedures that should be followed in any atmospheric test. It is presented as an aid in conducting atmospheric corrosion tests so that some of the pitfalls of such testing may be avoided. As such, it is concerned mainly with panel exposures to obtain data for comparison purposes.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers high-strength, low-alloy structural steel shapes, plates, and bars for welded, riveted, or bolted construction with atmospheric corrosion resistance. Heat analysis shall be performed wherein the low-alloy structural steel materials shall conform to the required chemical composition for carbon, manganese, phosphorous, sulfur, silicon, nickel, chromium, molybdenum, copper, vanadium, and columbium. Steel samples shall also undergo the tensile test and conform to required values of tensile strength, yield point, and elongation.1.1 This specification covers high-strength low-alloy structural steel shapes, plates, and bars for welded, riveted, or bolted construction but intended primarily for use in welded bridges and buildings where savings in weight or added durability are important. The atmospheric corrosion resistance of this steel in most environments is substantially better than that of carbon structural steels with or without copper addition (see Note 1). When properly exposed to the atmosphere, this steel is suitable for many applications in the bare (unpainted) condition. This specification is limited to material up to 8 in. [200 mm] inclusive in thickness.NOTE 1: For methods of estimating the atmospheric corrosion resistance of low-alloy steels, see Guide G101.1.2 When the steel is to be welded, a welding procedure suitable for the grade of steel and intended use or service is to be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.3 Units—This specification is expressed in both inch-pound units and in SI units; however, unless the purchase order or contract specifies the applicable M specification designation (SI units), the inch-pound units shall apply. The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system is to be used independently of the other. Combining values from the two systems may result in nonconformances with the standard.1.4 The text of this specification contains notes, footnotes, or both, that provide explanatory material. Such notes and footnotes, excluding those in tables and figures, do not contain any mandatory requirements.1.5 For structural products produced from coil and furnished without heat treatment or with stress relieving only, the additional requirements, including additional testing requirements and the reporting of additional test results, of Specification A6/A6M apply.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Corrosivity monitoring of test environments provides a means to monitor an integrated value of test corrosivity which cannot be evaluated from test parameters themselves, such as temperature, humidity, and gas concentration. As such the monitor value can be used for specification purposes such as test validation. Electrical resistance monitoring of conductors exposed to corrosive media is a well-established practice.3,4,5,64.2 The resistance method assumes uniform corrosion over the entire surface of the exposed metal conductor segment. Local corrosion such as pitting, crevice, or grain boundary corrosion may provide invalid estimates of test corrosivity. Marked changes in slope of the curve of electrical resistance ratio versus time may indicate undesired processes which can be due to deficiencies in the test atmosphere or in the monitor itself.4.3 Because of limitations of the diffusion process within the corrosion product formed on the metal conductor segment of the RM probe when passivating corrosion films are formed, resistance monitoring may not be useful for test chamber monitoring purposes for very long test exposures. Chamber monitoring is dependent on detecting changes in the rate of corrosion of the RM as an indicator signal that specified gas concentrations must be reverified. However, low corrosion rates limit the absolute value of the rate of change of corrosion rate with change of test conditions; for parabolic film growth processes, the growth rate decreases with time limiting the sensitivity of the RM at extended test times.4.4 Since corrosion rate can be a complex function of test parameters in MFG tests with any given metal primarily responsive to a subset of the gases in the MFG environment, more than one type metal resistance probe is required in order to assist in maintenance of relative gas concentrations. For such test specifications, values of resistance ratios must be referred to ratios obtained under known test conditions as supplied by the test specifier. Information relating to the sensitivity of various metals to various corrodants has been published.7,84.5 RM probes can be useful from 1 % of thickness consumed upward to 50 % of thickness consumed by the corrosion film growth. Conductor thicknesses between 25 nm and 0.2 mm have been reported and common sizes are available commercially.1.1 This test method provides a means for monitoring corrosivity of environmental tests that involve exposure to corrosive gases.1.2 This test method uses a resistance monitor (RM) probe fabricated from a chosen metal conductor, with one conductor segment uncovered to permit exposure of the chosen metal conductor to the corrosive gas mixture and the second conductor segment covered to protect the metal conductor of this segment from direct attack by the corrosive gas mixture. The covered conductor segment provides a reference for evaluating changes in the uncovered segment. The ratio of the resistance of the exposed segment to that of the covered segment provides a measure of the amount of metal conductor that has reacted with the corrosive gas test environment to form poorly conducting corrosion product, thus providing a measure of test corrosivity.1.3 Resistance monitoring is applicable to a broad range of test conditions by selection of the appropriate metal conductor and initial metal thickness.1.4 This method is similar in intent to Test Methods B808.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Material Safety Data Sheet (MSDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
44 条记录,每页 15 条,当前第 3 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页