微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This test method is useful for the direct measurement of the thicknesses of metallic coatings and of individual layers of composite coatings, particularly for layers thinner than normally measured with the light microscope.4.2 This test method is suitable for acceptance testing.4.3 This test method is for the measurement of the thickness of the coating over a very small area and not of the average or minimum thickness per se.4.4 Accurate measurements by this test method generally require very careful sample preparation, especially at the greater magnifications.4.5 The coating thickness is an important factor in the performance of a coating in service.1.1 This test method covers the measurement of metallic coating thicknesses by examination of a cross section with a scanning electron microsope (SEM).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The ENDF/B library in the United States and similar libraries elsewhere, such as JEFF (23), JENDL (21), and BROND (22), provide a compilation of neutron cross section and other nuclear data for use by the nuclear community. The availability of these excellent evaluations makes possible standardized usage, thereby allowing easy referencing and intercomparisons of calculations. However, as the first ENDF/B files were developed it became apparent that they were not adequate for all applications. This need resulted in the development of the specialized ENDF/B Dosimetry File (17, 25), consisting of activation cross sections important for dosimetry applications. This file was made available worldwide. Later, other “Special Purpose” files were introduced (26). In the ENDF/B-VI compilation (27), dosimetry files no longer appeared as separate evaluation files. The ENDF/B-VII.0 compilation (28) removed most of the reaction-specific covariance files used by the dosimetry community. It kept the covariance files for the “standard cross sections” in a special sub-library, but the covariance data in this sub-library are only provided over the energy range in which each reaction is considered to be a “standard”, and does not include the full energy range required for LWR PVS dosimetry applications. Later updates to the ENDF/B releases added covariance files for some reaction channels but these covariance files were often based solely on calculations and were not representative of the methodology used to derive the underlying ENDF/B cross section. In response to the need for a dosimetry-specific library, the International Atomic Energy Agency convened a Coordinated Research Project (CRP) that drew upon the set of international experts to provide a recommended set of dosimetry cross sections and to compile a set of validation evidence that supported the use of this recommended dataset. This file, the International Reactor Dosimetry and Fusion File (IRDFF) (19, 20), draws upon other national nuclear evaluations and supplements these evaluations with a set of reactions evaluated by expert international groups. The IRDFF library was developed to support the LWR dosimetry application as well as other dosimetry applications that go beyond the scope of this standard and, as part of its development process, it incorporates validation data acquired in reference and standard benchmark neutron fields. Some of the IRDFF supplemental reactions represent material evaluations that are currently being examined by the CSEWG for inclusion within updated ENDF/B evaluations. The supplemental IRDFF evaluations only include the specific reactions of interest to the dosimetry community and not a full material evaluation. The ENDF community requires a complete evaluation before including it in the main ENDF/B evaluated library.4.2 The application to LWR surveillance dosimetry introduced new data needs that can best be satisfied by the creation of a dedicated cross section file. This file shall be maintained in a form designed for easy application by users (minimal processing). The file shall continue to incorporate the following types of information or indicate the sources of the following type of data that should be used to supplement the file contents:4.2.1 Dosimetry cross sections for fission, activation, helium production sensor reactions in LWR environments in support of radiometric, solid state track recorder, helium accumulation dosimetry methods (see Test Methods E853, E854, E910, and E1005).4.2.2 Other cross sections or sensor response functions useful for active or passive dosimetry measurements, for example, the use of neutron absorption cross sections to represent attenuation corrections due to covers or self-shielding.4.2.3 Cross sections for damage evaluation, such as displacements per atom (dpa) in iron.4.2.4 Related nuclear data needed for dosimetry, such as branching ratios, fission yields, and atomic abundances.4.3 The ASTM-recommended cross sections and uncertainties are based mostly on the IRDFF (version 1.05) dosimetry files. Damage cross sections for materials such as iron have been added in order to promote standardization of reported dpa measurements within the dosimetry community. Integral measurements from benchmark fields and reactor test regions have been considered in order to ensure self-consistency (29). The total dosimetry file is intended to be as self-consistent as possible with respect to both differential and integral measurements as applied in LWR environments. This self-consistency of the data file is mandatory for LWR-pressure vessel surveillance applications, where only very limited dosimetry data are available. Where modifications to an existing evaluated cross section have been made to obtain this self-consistence in LWR environments, the modifications shall be detailed in the associated documentation (see (19, 29)).1.1 This guide covers the establishment and use of an ASTM evaluated nuclear data cross section and uncertainty file for analysis of single or multiple sensor measurements in neutron fields related to light water reactor LWR-Pressure Vessel Surveillance (PVS). These fields include in- and ex-vessel surveillance positions in operating power reactors, benchmark fields, and reactor test regions.1.2 Requirements for establishment of ASTM-recommended cross section files address data format, evaluation requirements, validation in benchmark fields, evaluation of error estimates (covariance file), and documentation. A further requirement for components of the ASTM-recommended cross section file is their internal consistency when combined with sensor measurements and used to determine a neutron spectrum.1.3 Specifications for use include energy region of applicability, data processing requirements, and application of uncertainties.1.4 This guide is directly related to and should be used primarily in conjunction with Guides E482 and E944, and Practices E560, E185, and E693.1.5 The ASTM cross section and uncertainty file represents a generally available data set for use in sensor set analysis. However, the availability of this data set does not preclude the use of other validated data, either proprietary or nonproprietary. When alternate cross section files that deviate from the requirements laid out in this standard are used, the deviations should be noted to the customer of the dosimetry application.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by fine grain-sized (<50 μm) matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and high-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure specimen in addition to dissimilar mechanical behavior in tension and compression for CFCCs lead to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material.4.3 Unlike monolithic advanced ceramics which fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strength distributions of the brittle matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the exact influence of test specimen volume on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile specimens with different volumes of material in the gage sections may be different due to these volume differences.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) which may be influenced by testing mode, testing rate, processing or alloying effects, or environmental influences. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments.4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for, given primary processing conditions and post-processing heat treatments.4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is highly recommended.1.1 This test method covers the determination of tensile behavior including tensile strength and stress-strain response under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at ambient temperature. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendix. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Note that tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D). In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, and 3D continuous fiber reinforcement. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7 and 8.2.5.2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 This test method audits the volume of material in a stockpile and is used with a density value to calculate a tonnage calculation value used to compare the book value to the physical inventory results. This test method is used to determine the volume of coal or other materials in a stockpile.1.1 This test method covers procedures concerning site preparation, technical procedures, quality control, and equipment to direct the efforts for determining volumes of bulk material. These procedures include practical and accepted methods of volumetric determination.1.2 This test method allows for only two volume computation methods.1.2.1 Contour Test Method—See 8.1.1 and 9.1.1.2.2 Cross-Section Test Method—See 8.1.2 and 9.2.1.2.3 This test method requires direct operator compilation for both contours and cross-section development.1.2.4 The use of Digital Terrain Model software and procedures to create contours or cross sections for volume calculation is NOT encompassed in this test method.NOTE 1: A task group has been established to develop a test method for Digital Terrain Modeling (DTM) procedures. It will address all known data collection procedures such as conventional ground survey, photogrammetry, geodetic positioning satellite (GPS), and so forth.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers mechanical cold expansion insert fitting with compression sleeve for cross-linked polyethylene (PEX) tubing. Fittings shall be made from specific copper alloy for machined brass fittings, forged brass fittings, and compression sleeves. The fitting shall conform to the specified dimensions, tolerances, maximum angular variation, solder joint ends, workmanship, finish, appearance, assembly, quality, and marking.1.1 This specification covers mechanical cold expansion insert fittings with compression sleeve suitable for use with cross-linked polyethylene PEX plastic tubing in 3/8, ½, 5/8, ¾ , and 1in. and larger nominal diameters that meet the requirements of Specifications F876 and F877. These fittings are intended for use in 100 psi (689.5 kPa) cold and hot water distributions systems operating at temperatures up to and including 180° F (82°C). Included are the requirements for materials, workmanship, dimensions, and markings to be used on the fittings and compression sleeves 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the requirements for materials, workmanship, dimensions, performance, and markings for metal insert fittings with o-ring seals and copper crimp rings for use with SDR9 cross-linked polyethylene and SDR9 cross-linked polyethylene/aluminum/cross-linked polyethylene tubing systems. The fittings shall be made from one of the following metals: cast copper alloys, machined brass, forged brass, crimp rings, or o-rings. Insert fittings shall be joined to the tubing by compression of a copper crimp ring around the outer circumference of the tubing, forcing the tubing material into annular spaces formed by ribs on the fitting. Performance tests shall be conducted on the assemblies to determine the material and dimensional requirements of the specimens. Marking shall be applied to the fittings in such a manner that it remains legible after installation and inspection.1.1 This specification covers metal insert fittings with o-ring seals and copper crimp rings for use with Cross-linked Polyethylene (PEX) and Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene (PEX-AL-PEX) tubing in 1/2 , 3/4, 1, and 11/4 in. nominal diameters that meet the requirements for Specifications F876 or F3253, and F2262 respectively. These fittings are intended for use in 125 psi (861.9 kPa) (PEX-AL-PEX) and 100 psi (689.5 kPa) (PEX) cold- and hot-water distribution systems operating at temperatures up to and including 180 °F (82 °C). Included are the requirements for materials, workmanship, dimensions, performance, and markings to be used on the fittings and rings.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 Compliance with this specification requires that these fittings be tested and certified to Specification F877 and F2262.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers copper alloy metal press insert fittings with factory assembled stainless steel press sleeves incorporating 3 view holes and tool locator ring. These fittings are for use with cross-linked polyethylene (PEX) tubing in nominal sizes 5/16 , 3/8 , 1/2 , 5/8 , 3/4 , 1, 11/4 , 1 1/2 , and 2 that meet the requirements for Specification F876 or F3253 and for use with polyethylene of raised temperature (PE-RT) tubing in nominal sizes 3/8 , 1/2 , 3/4 , 1, 11/4 , 11/2 , and 2 that meet the requirements of Specification F2769. These fittings are intended for use in 100 psi (689.5 kPa) hot and cold water distribution systems operating at temperatures up to, and including, 180 °F (82 °C). The requirements for materials, workmanship, dimensions, and markings to be used on the fittings and sleeves are also included.1.1.1 When used with PEX tubing in accordance with Specification F876, the fittings covered by this specification are intended for use in, but not limited to, residential and commercial, hot- and cold-potable water distribution systems, water service lines, building supply lines, reclaimed water, fire protection, radiant heating and cooling systems, hydronic distribution systems, snow and ice melting systems, geothermal ground loops, district heating, turf conditioning, compressed air distribution and building services pipe.1.1.2 When used with PEX tubing in accordance with Specification F3253, the fittings covered by this specification are intended for use in residential and commercial hydronic heating and cooling systems.1.1.3 When used with PE-RT tubing in accordance with Specification F2769, the fittings covered by this specification are intended for use in residential and commercial, hot- and cold-potable water distribution systems, and building supply lines.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers plastic press insert fittings with factory assembled stainless steel press sleeves incorporating 3 view holes and a tool locator ring. These fittings are for use with cross-linked polyethylene (PEX) tubing in nominal sizes 3/8 , 1/2 , 3/4 , 1, 11/4 , 11/2 , and 2 that meet the requirements for Specification F876 or F3253 and for use with polyethylene of raised temperature (PE-RT) tubing in nominal sizes 3/8 , 1/2 , 3/4 , 1, 11/4 , 11/2 , and 2 that meet the requirements of Specification F2769. These fittings are intended for use in 100 psi (690 kPa) cold- and hot-water distribution systems operating at temperatures up to and including 180 °F (82 °C). Included are the requirements for material, molded part properties, performance, workmanship, dimensions, and markings to be used on the fittings and sleeves.1.1.1 When used with PEX tubing in accordance with Specification F876, the fittings covered by this specification are intended for use in, but not limited to, residential and commercial, hot- and cold-potable water distribution systems, water service lines, building supply lines, reclaimed water, fire protection, radiant heating and cooling systems, hydronic distribution systems, snow and ice melting systems, geothermal ground loops, district heating, turf conditioning, compressed air distribution and building services pipe.1.1.2 When used with PEX tubing in accordance with Specification F3253, the fittings covered by this specification are intended for use in residential and commercial hydronic heating and cooling systems.1.1.3 When used with PE-RT tubing in accordance with Specification F2769, the fittings covered by this specification are intended for use in residential and commercial, hot- and cold-potable water distribution systems, and building supply lines.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Determination of flexural modulus by this test method is especially useful for quality control and specification purposes.5.2 Experimental values for flexural modulus will vary with specimen depth, span length, loading rate, ambient test temperature, and other atmospheric conditions.5.3 Before proceeding with this test method, reference should be made to the specification of the material being tested, including constituent materials of the specimen. Any test specimen preparation, environmental or loading conditioning, dimensions, or testing parameters covered in the material specification, or both, shall take precedence over those mentioned in this test method. If there are no material specifications, then these default conditions apply. Table 1 in Classification D4000 lists the ASTM materials standards that currently exist.1.1 This test method covers the determination of Flexural Modulus of pultruded open and closed fiber reinforced polymer (FRP) composites of doubly symmetrical cross sections (sections having geometric symmetry about both the major and minor axes) about their geometric centroid subjected to flexure and shear. This test method utilizes a three-point loading system applied to a simply supported beam.1.2 The values stated in SI units are to be regarded as the standard. The values provided in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: The is no known ISO equivalent to this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Laser profiling assessment is a quality control tool for identifying and quantifying deformation, physical damage, and other pipe anomalies after installation, providing means and methods for determining the quality of workmanship and compliance with project specifications. Laser profiling can be used for:4.1.1 Measurement of the structural shape, cross sectional area and defects;4.1.2 Collection of data needed for pipe rehabilitation or replacement design; and4.1.3 Post rehabilitation, replacement or new construction workmanship verification.4.2 A laser profile pre-acceptance and condition assessment survey provides significant information in a clear and concise manner, including but not limited to graphs and still frame digital images of pipe condition prior to acceptance, thereby providing objective data on the installed quality and percentage ovality, deformation, deflection or deviation, that is often not possible from an inspection by either a mandrel or CCTV only survey.1.1 Laser profiling is a non-contact inspection method used to create a pipe wall profile and internal measurement using a standard CCTV pipe inspection system, 360 degree laser light projector, a measurement by means of infrared sensors and geometrical profiling software. This practice covers the procedure for the measurement to determine any deviation of the internal surface of installed pipe compared to the design. The measurements may be used to verify that the installation has met design requirements for acceptance or to collect data that will facilitate an assessment of the condition of pipe or conduit due to structural deviations or deterioration. This standard practice provides minimum requirements on means and methods for laser profiling to meet the needs of engineers, contractors, owners, regulatory agencies, and financing institutions.1.2 This practice applies to all types of pipe material, all types of construction, and pipe shapes.1.3 This practice applies to depressurized and gravity flow storm sewers, drains, sanitary sewers, and combined sewers with diameters from 6 in. to 72 in. (150 mm and 1800 mm).1.4 This standard does not include all aspects of pipe inspection, such as joint gaps, soil/water infiltration in joints, cracks, holes, surface damage, repairs, corrosion, and structural problems associated with these conditions.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 The profiling process may require physical access to lines, entry manholes, and operations along roadways that may include safety hazards.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. There are no safety hazards specifically, however, associated with the use of the laser ring profiler specified (listed and labeled as specified in 1.3).1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The velocity measurements described in this practice may be used to characterize material variations that affect mechanical or physical properties. This procedure is useful for measuring variations in microstructural features such as grain structure, pore fractions, and density variations in monolithic ceramics.4.2 Velocity measurements described herein can assess subtle variations in porosity within a given material or component, as, for example, in ceramic superconductors and structural ceramic specimens (2, 3).4.3 In addition to ceramics and ceramic composites, the velocity measurements described herein may be applied to polycrystalline and single crystal metals, metal matrix composites, and polymer matrix composites.4.4 An alternative technique for velocity measurement is given in Practice E494.1.1 This practice covers a procedure for measurement of ultrasonic velocity in structural engineering solids such as monolithic ceramics, toughened ceramics, and ceramic matrix composites.1.2 This practice is based on the broadband pulse-echo contact ultrasonic method. The procedure involves a computer-implemented, frequency-domain method for precise measurement of time delays between pairs of echoes returned by the back surface of a test sample or part.1.3 This practice describes a procedure for using a digital cross-correlation algorithm for velocity measurement. The cross-correlation function yields a time delay between any two echo waveforms (1).21.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Laser profiling assessment is a quality control tool for identifying and quantifying deformation, physical damage, and other pipe anomalies after installation, providing means and methods for determining the quality of workmanship and compliance with project specifications. Laser profiling capabilities include:4.1.1 Measurement of the structural shape, cross sectional area and defects;4.1.2 Collection of data needed for pipe rehabilitation or replacement design; and4.1.3 Post rehabilitation, replacement or new construction workmanship verification.4.2 A laser profile pre-acceptance and condition assessment survey provides significant information in a clear and concise manner, including but not limited to graphs and still frame digital images of pipe condition prior to acceptance, thereby providing objective data on the installed quality and percentage ovality, or degree of deformation, deflection or deviation, that is often not possible from an inspection by either a mandrel or only CCTV.1.1 This practice covers the procedure for the post installation verification and acceptance of buried pipe deformation using a visible rotating laser light diode(s), a pipeline and conduit inspection analog or digital CCTV camera system and image processing software. The combination CCTV pipe inspection system, with cable distance counter or onboard distance encoder, rotating laser light diode(s) and ovality measurement software shall be used to perform a pipe measurement and ovality confirmation survey, of new or existing pipelines and conduits as directed by the responsible contracting authority. This standard practice provides minimum requirements on means and methods for laser profiling to meet the needs of engineers, contractors, owners, regulatory agencies, and financing institutions.1.2 This practice applies to all types of material, all types of construction, or shape.1.3 This practice applies to gravity flow storm sewers, drains, sanitary sewers, and combined sewers with diameters from 6 in. to 72 in. (150 mm to 1800 mm).1.4 The Laser Light Diode(s) shall be tested, labeled and certified to conform to US requirements for CDRH Class 2 or below (not considered to be hazardous) laser products or certified to conform to EU requirements for Class 2M or below laser products as per IEC 60825-1, or both.1.5 The profiling process may require physical access to lines, entry manholes and operations along roadways that may include safety hazards.1.6 This practice includes inspection requirements for determining pipeline and conduit ovality only and does not include all the required components of a complete inspection. The user of this practice should consider additional items outside this practice for inspection such as joint gap measurement, soil/water infiltration, crack and hole measurement, surface damage evaluation, evaluation of any pipeline repairs, and corrosion evaluation.1.7 This standard practice does not address limitations in accuracy due to improper lighting, dust, humidity, fog, moisture on pipe walls or horizontal/vertical offsets. Care should be taken to limit environmental factors in the pipeline that affect accuracy of the inspection.1.8 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. There are no safety hazards specifically, however, associated with the use of the laser profiler specified (listed and labeled as specified in 1.3).1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
28 条记录,每页 15 条,当前第 2 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页