微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This guide will encompass considerations for manufacturers regarding sources and potential causes of subvisible particles in biomanufacturing operations and the use of dynamic imaging particle analyzers as a suggested common method to monitor them. The guide will address the following components of particle analysis using dynamic imaging microscopy: fundamental principles, operation, image analysis methods, sample handling, instrument calibration, and data reporting.1.1 Biotherapeutic drugs and vaccines are susceptible to inherent protein aggregate formation which may change over the product shelf life. Intrinsic particles, including excipients, silicone oil, and other particles from the process, container/closures, equipment or delivery devices, and extrinsic particles which originate from sources outside of the contained process, may also be present. Monitoring and identifying the source of the subvisible particles throughout the product life cycle (from initial characterization and formulation through finished product expiry) can optimize product development, process design, improve process control, improve the manufacturing process, and ensure lot-to-lot consistency.1.2 Understanding the nature of particles and their source is a key to the ability to take actions to adjust the manufacturing process to ensure final product quality. Dynamic imaging microscopy (also known as flow imaging or flow microscopy) is a useful technique for particle analysis and characterization (proteinaceous and other types) during product development, in-process and commercial release with a sensitive detection and characterization of subvisible particles at ≥2 µm and ≤100 µm (although smaller and larger particles may also be reported if data are available). In this technique brightfield illumination is used to capture images either directly in a process stream, or as a continuous sample stream passes through a flow cell positioned in the field of view of an imaging system. An algorithm performs a particle detection routine. This process is a key step during dynamic imaging. The digital particle images in the sample are processed by image morphology analysis software that quantifies the particles in size, count, image intensity, and morphological parameters. Dynamic imaging particle analyzers can produce direct determinations of the particle count per unit volume (that is, particle concentration), as a function of particle size by dividing the particle count by the volume of imaged fluid (see Appendix X1).1.3 This guide will describe best practices and considerations in applying dynamic imaging to identification of potential sources and causes of particles during biomanufacturing. These results can be used to monitor these particles and where possible, to adjust the manufacturing process to avoid their formation. This guide will also address the fundamental principles of dynamic imaging analysis including image analysis methods, sample preparation, instrument calibration and verification and data reporting.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 This test method provides a measure of the bond quality of the fibers, or particles, at the surface of wood-base fiber and particle panel materials including particleboard, medium-density fiberboard (MDF) and oriented strand board (OSB). Surface bond strength is a measure of the strength and resistance to delamination of the bond between overlay materials and panel surfaces and is an important consideration when these overlay materials, such as wood veneers, saturated papers, or plastic overlays, are to be bonded to the panel surface during secondary manufacturing.1.1 This test method is a measure of the cohesive bond strength of the fibers, or particles, on the surface of wood-base fiber and particle panels (for example, particleboard and medium-density fiberboard) in the direction perpendicular to the plane of the panel.1.1.1 To determine the internal cohesive bond strength of wood-base fiber and particle panels, use Section 11 of Test Methods D1037.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 PCS is one of the very few techniques that are able to deal with the measurement of particle size distribution in the nano-size region. This guide highlights this light scattering technique, generally applicable in the particle size range from the sub-nm region until the onset of sedimentation in the sample. The PCS technique is usually applied to slurries or suspensions of solid material in a liquid carrier. It is a first principles method (that is, calibration in the standard understanding of this word, is not involved). The measurement is hydrodynamically based and therefore provides size information in the suspending medium (typically water). Thus the hydrodynamic diameter will almost certainly differ from other size diameters isolated by other techniques and users of the PCS technique need to be aware of the distinction of the various descriptors of particle diameter before making comparisons between techniques. Notwithstanding the preceding sentence, the technique is widely applied in industry and academia as both a research and development tool and as a QC method for the characterization of submicron systems.1.1 This guide deals with the measurement of particle size distribution of suspended particles, which are solely or predominantly sub-100 nm, using the photon correlation (PCS) technique. It does not provide a complete measurement methodology for any specific nanomaterial, but provides a general overview and guide as to the methodology that should be followed for good practice, along with potential pitfalls.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 It is important to recognize that the results obtained by this method or any other method for particle size distribution utilizing different physical principles may disagree. The results are strongly influenced by the physical principles employed by each method of particle size analysis. The results of any particle sizing method should be used only in a relative sense, and should not be regarded as absolute when comparing results obtained by other methods.4.2 Light scattering theory that is used for determination of particle size has been available for many years. Several manufacturers of testing equipment have units based on these principles. Although each type of testing equipment utilizes the same basic principles for light scattering as a function of particle size, different assumptions pertinent to applications of the theory and different models for converting light measurements to particle size may lead to different results for each instrument. Therefore, the use of this test method cannot guarantee directly comparable results from the various manufacturers' instruments.4.3 Manufacturers and purchasers of alumina and quartz will find the method useful to determine particle size distributions for materials specifications, manufacturing control, and research and development.1.1 This test method covers the determination of particle size distribution of alumina or quartz using laser light-scattering instrumentation in the range from 0.1 to 500 μm.1.2 The procedure described in this test method may be applied to other nonplastic ceramic powders. It is at the discretion of the user to determine the method's applicability.1.3 This test method applies to analysis using aqueous dispersions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 Quartz has been classified by IARC as a Group I carcinogen. For specific hazard information in handling this material, see the supplier's Material Safety Data Sheet.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

These test methods provide a measure of the moisture resistance of cellulosic-based fiber and particle panels (for example, medium-density fiberboard (MDF), particleboard, and hardboard). This test methodology can be used to assess the thickness swelling and bond integrity characteristics of panels engineered for interior end-use applications involving exposure to cyclic temperatures and intermittent wetting environments.1.1 These test methods provide a measure of the moisture resistance of cellulosic-based fiber and particle panels (for example, medium-density fiberboard (MDF), particleboard, and hardboard). Resistance to moisture changes is measured by dimensional and internal bond changes and does not refer to decay/mold resistance or other performance aspects.1.2 These test methods do not address structural properties or performance following moisture exposure. Panels are subjected to repeated cycles of water submersion and oven drying. After three cycles, the test specimens are tested for thickness swelling (TS) and internal bond (IB) strength.    1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Particle size and shape are important in predicting the performance of catalytic materials. They influence the bulk density of the final product and thereby the effectiveness of performance.5.2 Establishing a verification reference for the analyzer that is commercially available and dimensionally reliable to close tolerances enables different analyzers to be easily checked to equivalent standards.5.3 This practice may also be followed to analyze catalytic materials for quality manufacturing purposes. Sections 9 and 10 instruct on sample count determination as well as sampling recommendations. Test Method D6299 may be utilized to monitor performance of the analyzer in measuring the size and shape of catalytic materials.1.1 This practice covers the calibration and verification of Dynamic Imaging Analyzers (analyzers) using catalytic and non-catalytic reference materials. The measurement range of analyzers covers from 500 µm to 20 000 µm.1.2 This practice may also be used to analyze catalytic materials once the analyzer has been calibrated and verified.1.3 Units—The values stated in SI units are to be regarded as standard; however, English and mesh units are also acceptable with conversions provided in Appendix X3.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 A radiation-hardness assurance program requires a methodology for relating radiation-induced changes in materials exposed to a variety of particle species over a wide range of energies, including those encountered in spacecraft and in terrestrial environments as well as those produced by particle accelerators and nuclear fission and fusion reactors.4.2 A major source of radiation damage in electronic and photonic devices and materials is the displacement of atoms from their normal lattice site. An appropriate exposure parameter for such damage is the damage energy calculated from NIEL by means of Eq 2. Other analogous measures, which may be used to characterize the irradiation history that is relevant to displacement damage, are damage energy per atom or per unit mass (displacement kerma, when the primary particles are neutral), and displacements per atom (dpa). See Terminology E170 for definitions of those quantities.4.3 Each of the quantities mentioned in the previous paragraph should convey similar information, but in a different format. In each case the value of the derived exposure parameter depends on approximate nuclear, atomic, and lattice models, and on measured or calculated cross sections. If consistent comparisons are to be made of irradiation effects caused by different particle species and energies, it is essential that these approximations be consistently applied.4.4 No correspondence should be assumed to exist between damage energy as calculated from NIEL and a particular change in a material property or device parameter. Instead, the damage energy should be used as a parameter which describes the exposure. It may be a useful correlation variate, even when different particle species and energies are included. NIEL should not be reported as a measure of damage, however, unless its correlation with a particular damage modality has been demonstrated in that material or device.4.5 NIEL is a construct that depends on a model of the particle interaction processes in a material, as well as the cross section for each type of interaction. It is essential, when using NIEL as a correlation parameter, to ensure that consistent modeling parameters and nuclear data are used to calculate the NIEL value for each irradiation.4.6 Damage energy deposited in materials can be calculated directly, without the use of NIEL, using the Monte Carlo codes mentioned in 3.2.4.7, if all the particles involved in atomic displacement are tracked. The utility of the NIEL concept arises in cases where some particles, especially recoiling heavy ions, do not need to be tracked. In the NIEL representation, these are treated instead by means of infinite homogeneous medium solutions of the type originated by Lindhard et al. (10).1.1 This practice describes a procedure for characterizing particle irradiations of materials in terms of non-ionizing energy loss (NIEL). NIEL is used in published literature to characterize both charged and neutral particle irradiations.1.2 Although the methods described in this practice apply to any particles and target materials for which displacement cross sections are known (see Practice E521), this practice is intended for use in irradiations in which observed damage effects may be correlated with atomic displacements. This is true of some, but not all, radiation effects in electronic and photonic materials.1.3 Procedures analogous to this one are used for calculation of displacements per atom (dpa) in charged particle irradiations (see Practice E521) or neutron irradiations (see Practice E693).1.4 Guidance on calculation of dpa from NIEL is provided.1.5 Procedures related to this one are used for calculation of 1-MeV equivalent neutron fluence in electronic materials (see Practice E722), but in that practice the concept of damage efficiency, based on correlation of observed damage effects, is included.1.6 Guidance on conversion of NIEL in silicon to monoenergetic neutron fluence in silicon (see Practice E722), and vice versa, is provided.1.7 The application of this standard requires knowledge of the particle fluence and energy distribution of particles whose interaction leads to displacement damage.1.8 The correlation of radiation effects data is beyond the scope of this standard. A comprehensive review (1)2 of displacement damage effects in silicon and their correlation with NIEL provides appropriate guidance that is applicable to semiconductor materials and electronic devices.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The particle size of fine mesh and powdered activated carbon is sometimes used to evaluate filter cake filtration rates and the filter penetration in filtering applications.5.2 The selection and handling of fine mesh or powdered activated carbon, and operation of processes using fine mesh or powdered activated carbon, requires the knowledge of the particle size.5.3 This test method is intended for single sieve testing only. For determination of particle size distribution of a sample, the test must be repeated using sieves with different openings.NOTE 1: Relative humidity (RH) can affect the repeatability and accuracy of this test. Activated carbon not at equilibrium with the RH of the ambient air may lose or gain weight accordingly, dependent upon whether the carbon picks up or loses moisture.1.1 This test method covers the determination of the particle size of powdered activated carbons using an air-jet sieve device. For purposes of this test method, powdered activated carbon is defined as activated carbon in particle sizes predominantly in a range of 80 mesh (0.180 mm) through 500 mesh (0.025 mm).1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The method of powder dispersion in a liquid has a significant effect on the results of a particle size distribution analysis. The analysis will show a too-coarse, unstable, or nonrepeatable distribution if the powder has not been dispersed adequately. It is therefore important that parties wishing to compare their analyses use the same dispersion technique.4.2 This guide provides ways of deriving dispersion techniques for a range of metal powders and compounds. It should be used by all parties performing liquid-dispersed particle size analysis of all of the materials covered by this guide (see 1.1, 1.2, and 4.1).4.3 Table 1 provides some dispersion procedures that have been found useful and consistent for the particular materials listed there. These are only suggested dispersion procedures; the procedures and dispersion checks of 7.1.2 – 7.1.4, or the more detailed method development procedures of Guide E3340, should still be used to verify adequate dispersion for each particular material and particle size range.(A) Stated ultrasonic power and duration times are given as an indication only. Specific conditions should be sought for the particular system in question during the method development phase.(B) Tween 21, chemically known as polyoxyethylene6 sorbitan monolaurate, is manufactured by Croda International PLC, and is available from various chemical suppliers.(C) Three to five drops Tween 21 in 30 to 50 mL water.4.4 This guide should be used in the preparation of powders for use in Test Methods B761 and B822 and other procedures that analyze metal powder particle size distributions in liquid-dispersed systems.1.1 This guide covers the dispersion in liquids of metal powders and related compounds for subsequent use in particle size analysis instruments. This guide describes a general procedure for achieving and determining dispersion; it also lists procedures that have been found useful for certain materials.1.2 This guide does not include specific procedures for dry dispersion of particulate materials. It only indicates when liquid dispersion is not appropriate and dry dispersion must be utilized (see 7.1.2.1). For guidance on development of methods of dry dispersion, see Guide E3340.1.3 This guide is limited to metal powders and related metal compounds. However, the general procedure described herein may be used, with caution as to its significance, for other particulate materials, such as ceramics, pigments, minerals, etc.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Reported particle size measurement is a function of both the actual particle dimension and shape factor as well as the particular physical or chemical properties being measured. Caution is required when comparing data from instruments operating on different physical or chemical parameters or with different particle size measurement ranges. Sample acquisition, handling, and preparation can also affect reported particle size results.5.1.1 It is important to recognize that the results obtained by this test method, or any other method for particle size determination using different physical principles, may disagree. The results are strongly influenced by the physical principles employed by each method of particle size analysis. The results of any particle sizing method should be used only in a relative sense; they should not be regarded as absolute when comparing results obtained by other methods.5.2 Light scattering theory has been available for many years for use in the determination of particle size. Several manufacturers of testing equipment now have units based on these principles. Although each type of testing equipment uses the same basic principles for light scattering as a function of particle size, different assumptions pertinent to application of the theory, and different models for converting light measurements to particle size, may lead to different results for each instrument. Therefore, the use of this test method cannot guarantee directly comparable results from different types of instruments.5.3 Knowledge of the particle size distribution of metal powders is useful in predicting the powder-processing behavior and ultimate performance of powder metallurgy parts. Particle size distribution is related closely to the flowability, moldability, compressibility, and die-filling characteristics of a powder, as well as to the final structure and properties of finished powder metallurgy (P/M) parts.5.4 This test method is useful to both suppliers and users of powders in determining the particle size distributions for product specifications, manufacturing control, development, and research.5.5 This test method may be used to obtain data for comparison between lots of the same material or for establishing conformance, as in acceptance testing.1.1 This test method covers the determination of the particle size distribution by light scattering, reported as volume percent, of particulate materials including metals and compounds.1.2 This test method applies to analyses with both aqueous and nonaqueous dispersions. In addition, analysis can be performed with a gaseous dispersion for materials that are hygroscopic or react with a liquid carrier.1.3 This test method is applicable to the measurement of particulate materials in the range of 0.4 to 2000 μm, or a subset of that range, as applicable to the particle size distribution being measured.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 By following this test method, the particle size, particle size distribution and particle shape of particulates in liquid paint and pigment dispersions can be measured.5.2 Particle size, particle size distribution and particle shape have a great effect on the color, opacity and gloss of paints. Reproducing these characteristics is critical to the quality and performance of the paint produced.5.3 The dynamic imaging instrument is useful during manufacturing to detect oversize particles as well as the required size distribution of particles in order to provide quality and consistency from batch to batch.1.1 This test method covers the determination of particle size distribution and particle shape of liquid paints and pigmented liquid coatings by Dynamic Image Analysis. This method includes the reporting of particles ≥1 µm in size and up to 300 µm in size.NOTE 1: Shape is used to classify particles, droplets and bubbles and is not a reporting requirement.NOTE 2: The term paint(s) as used in this document includes liquid paint and liquid pigmented coatings.1.1.1 Some paints may be too viscous to flow through the imaging instrument without dilution which may be used to help the paint flow as long as significant contamination is not introduced into the paint.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers steel castings, surface acceptance standards, magnetic particle and liquid penetrant inspection. Liquid penetrant inspection or magnetic particle inspection shall be used for nondestructive inspection. Personnel performing examination shall be qualified in accordance with an acceptable written procedure as agreed upon between the purchaser and manufacturer. All relevant indications shall be evaluated in terms of the acceptance criteria. Individual relevant linear and nonlinear indications exceeding the specified acceptance levels shall be considered unacceptable.1.1 This specification covers acceptance criteria for the surface inspection of steel castings when nondestructively examined by magnetic particle or liquid penetrant inspection.1.2 This specification is to be used wherever the inquiry, contract, order, or specification states that the acceptance standards for magnetic particle or liquid penetrant inspection shall be in accordance with Specification A903/A903M.1.3 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. Combining values from the two systems may result in a nonconformance with this specification.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
147 条记录,每页 15 条,当前第 10 / 10 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页