微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The test method is based on a modification of the Ames Salmonella mutagenesis assay. As modified, there is good correlation with mouse skin-painting bioassay results for samples of raw and refined lubricating oil process streams.5.2 Mutagenic potency in this modified assay and carcinogenicity in the skin-painting bioassay also correlate with the content of three to seven-ring PACs, which include polycyclic aromatic hydrocarbons and their heterocyclic analogs. The strength of these correlations implies that PACs are the principal mutagenic and carcinogenic species in these oils. Some of the methods that have provided evidence supporting this view are referenced in Appendix X1.1.1 This test method covers a microbiological test procedure based upon the Salmonella mutagenesis assay of Ames et al. (1)2 (see also Maron et al. (2)). It can be used as a screening technique to detect the presence of potential dermal carcinogens in virgin base oils used in the formulation of metalworking oils. Persons who perform this test should be well versed in the conduct of the Ames test and conversant with the physical and chemical properties of petroleum products.1.2 The test method is not recommended as the sole testing procedure for oils which have viscosities less than 18 cSt (90 SUS) at 40 °C, or for formulated metalworking fluids.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Section 7 provides general guidelines for safe conduct of this test method.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 In this guide, the conditions, measurement apparatus, and procedures for measuring several characteristics of nanoparticle properties on three different instrument platforms using laser-amplified detection/power spectrum analysis (LAD/PSA) technology are described. This is a more recently developed technology, commercialized in 1990, than the older technology known as either photon correlation spectroscopy (PCS) or quasi-elastic light scattering (QLS)—those titles are interchangeable—developed first in 1961. Nanoparticle tracking analysis (NTA) is the most recent DLS technology to be commercialized. All three of these technologies fall under the broader category of DLS, based on the “dynamic” movement of the measured nanoparticles under Brownian motion.4.2 DLS in the lower end of the nanometre size range becomes progressively more difficult as the particle optical scattering coefficients drop sharply, reducing the scattered light intensity. The advantage of the heterodyne detection mode over the homodyne detection mode, especially at the low end of the nanometre range, will be explained.4.3 The LAD/PSA technology will be described and the major differences between it and the PCS-QLS and NTA technologies will be made clear. For thorough discussions of PCS-QLS, refer to Guide E2490, Test Method E3247, and ISO 22412 Annex Section A.1. For a thorough discussion of nanoparticle tracking analysis (NTA), refer to Guide E2834. For detailed information on laser-amplified detection/frequency power spectrum (LAD/FPS) technology, refer to ISO 22412 Annex Section A.2. General information on particle characterization practices can be found in Practice E1817, and nanotechnology terminology is given in Terminology E2456. Detailed information on sampling for particle characterization can be found in ISO 14488.1.1 The technology, laser-amplified detection/power spectrum analysis (LAD/PSA), is available in three different platforms, which will be designated as Platforms A, B, and C.1.1.1 Platform A—This is a solid-state probe configuration that serves as the optical bench in each of the platforms. It consists of an optical fiber coupler with a y-beam splitter that directs the scattered light signal from the nanoparticles at 180° back to a photodiode detector. The sensing end of the probe can be immersed in a suspension or positioned to measure one drop of a sample on top of the sensing surface.1.1.2 Platform B—The same probe is mounted in a case, positioned horizontally, to detect the signal from either a disposable or permanent cuvette.1.1.3 Platform C—Two probes are mounted in a case, horizontally, at opposite sides of a permanent sample cell. Both size distribution and zeta potential can be measured in this configuration.1.2 The laser beam travelling through the probe measuring the scattered light from the sample of nanoparticles, in all three platforms, is partially reflected back to the same photodiode detector, and the high optical power of the laser is added to the low optical power of the scattered light signal. The interference (mixing or beating) of those two signals is known as heterodyne beating. The resulting high-power detected signal provides the highest signal-to-noise ratio among dynamic light-scattering (DLS) technologies.1.3 This combined, amplified, optical signal is converted with a Fast Fourier transform (FFT) into a frequency power spectrum, then into a logarithmic power spectrum that is deconvolved into number and volume size distributions. The mean intensity, polydispersity, number and volume size distributions, concentration, and molecular weight can be reported in all platforms, plus zeta potential on Platform C.1.4 This technology is capable of measuring nanoparticles in a size range from 2.0 nanometres (nm) to 10 micrometres (µm), at concentrations in a suspending liquid medium up to 40 % cc/mL for all parameters given in 1.3.1.5 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Factors governing selection of a method for the determination of plutonium include available quantity of sample, sample purity, desired level of reliability, and equipment.5.1.1 This test method determines 5 mg to 20 mg of plutonium with prior dissolution using Practice C1168.5.1.2 This test method calculates plutonium mass fraction in solutions and solids using an electrical calibration based upon Ohm’s Law and the Faraday Constant.5.1.3 Chemical standards are used for quality control. When prior chemical separation of plutonium is necessary to remove interferences, the quality control standards should be included with each chemical separation batch (9).5.2 Fitness for Purpose of Safeguards and Nuclear Safety Application—Methods intended for use in safeguards and nuclear safety applications shall meet the requirements specified by Guide C1068 for use in such applications.1.1 This test method describes the determination of dissolved plutonium from unirradiated nuclear-grade (that is, high-purity) materials by controlled-potential coulometry. Controlled-potential coulometry may be performed in a choice of supporting electrolytes, such as 0.9 mol/L (0.9 M) HNO3, 1 mol/L (1 M) HClO4, 1 mol/L (1 M) HCl, 5 mol/L (5 M) HCl, and 0.5 mol/L (0.5 M) H2SO4. Limitations on the use of selected supporting electrolytes are discussed in Section 6. Optimum quantities of plutonium for this procedure are 5 mg to 20 mg.1.2 Plutonium-bearing materials are radioactive and toxic. Adequate laboratory facilities, such as gloved boxes, fume hoods, controlled ventilation, etc., along with safe techniques must be used in handling specimens containing these materials.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Storage stability depends on complex interactions. It varies with feedstock type and source, and the processing used. The rate of degradation may not change uniformly with temperature. Chemical reactions may lead to a change in color followed by the formation of soluble gums and insoluble sediments. Insoluble sediments may overload filters, and plug nozzles and injectors.5.2 This test method, which does not require the test sample to be heated, uses a portable apparatus and allows tests to be carried out on site or in the laboratory to give a result within 35 min.5.3 The potential beneficial effects of stability additives in fuels may not be recognized by this test method. Therefore, the actual storage stability of middle distillate fuels with stability additives may not be correctly indicated by these test results.5.4 The unstable reactive compounds (phenalenes and phenalenones) detected by this test method may be present in fuels containing catalytically cracked or straight run materials and can affect the potential instability of the fuel.5.5 If this test method is used by any party for a rapid assessment of stability, it is the responsibility of parties concerned to decide whether or not this procedure yields meaningful results.5.6 Interpretation of results and correlation with other test methods is given in Appendix X1.1.1 This test method covers a procedure3 for the rapid determination of phenalenes and phenalenones in middle distillate fuels, including marine, automotive, heating, and gas turbine fuel such as those specified in Specifications D396, D975, D2069, and D2880. Phenalenes and phenalenones affect the potential instability of fuels, leading to fuel degradation products during storage, which may cause performance problems.1.2 This test method is applicable to both dyed and undyed fuels at all points in the distribution chain from refinery to end-user. It is not applicable to fuels containing residual oil. The portable apparatus allows the whole test to be conducted on site or in a laboratory and does not require the test sample to be heated.1.3 This test method is suitable for testing samples with a relative absorbance of up to 5.00 absorbance units (AU).NOTE 1: The precision of the test method has been established on relative absorbance up to 1.00 AU. For relative absorbance above 1.00 AU the precision may not apply.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide covers animal implantation methods and analysis of the explanted DBM-containing material to determine whether a material or substance possesses osteoinductive potential, as defined by its ability to cause bone to form in vivo at a site that would otherwise not support bone formation, that is, heterotopically in a skeletal muscle implant site. For in vitro evaluation see Test Method F2131 for in vitro assessment of rhBMP 2.4.2 The test methods described here may be suitable for defining product specifications, cGMP lot release testing, research evaluation, regulatory submission, and so forth, but a positive outcome should not be presumed to indicate that the product will be osteoinductive in a human clinical application. At present, the only direct assays to assess new bone formation are in vivo, since the property of bone conduction or induction can only be assessed in a heterotopic or orthotopic site in a living animal. When these products are implanted in an orthotopic site, osteogenic factors already present at the implantation site may contribute to and enhance bone formation in conjunction with the osteoconductive nature of the product. Thus, orthotopic implantation of products may result in bone formation by acting on existing bone-forming cells and not by causing mesenchymal stem cells to become osteochondroprogenitor cells. In contrast, when these products are implanted in a heterotopic site, no native osteogenic factors are present to contribute to or enhance bone formation. Thus, heterotopic implantation of products will only result in new bone formation by causing mesenchymal stem cells to become osteochondroprogenitor cells. In vitro assays have been described and some believe they may correlate to the results obtained from in vivo assays. However such in vitro assays measure only some of the biochemical marker(s) associated with in vivo bone formation and are therefore only indirect assays for osteoinductive activity or the capacity to promote new bone formation. Many factors or combinations of factors contribute to osteoblast progenitor cells differentiating and/or proliferating into bone-forming cells in vitro that are both osteoinductive and osteoconductive when they are implanted in vivo. Thus, only an in vivo assay method currently directly considers the many potential factors involved in new bone formation induced by DBM-containing biomaterials. The qualification of a DBM or DBM-containing material should also encompass product characterization such as that described in Appendix X1.1.1 This guide covers general guidelines to evaluate the effectiveness of DBM-containing products intended to cause and/or promote bone formation when implanted or injected in vivo. This guide is applicable to products that may be composed of one or more of the following components: natural biomaterials (such as demineralized bone), and synthetic biomaterials (such as calcium sulfate, glycerol, and reverse phase polymeric compounds) that act as additives, fillers, and/or excipients (radioprotective agents, preservatives, and/or handling agents) to make the demineralized bone easier to manipulate. It should not be assumed that products evaluated favorably using this guidance will form bone when used in a clinical setting. The primary purpose of this guide is to facilitate the equitable comparison of unique bone-forming products in in vivo heterotopic models of osteoinductivity. The purpose of this guide is not to exclude other established methods.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with the use of DBM-containing bone-forming/promoting products. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices involved in the development of said products in accordance with applicable regulatory guidance documents and in implementing this guide to evaluate the bone-forming/promoting capabilities of the product.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This guide provides information that, if implemented, will reduce efflorescence potential in new masonry walls. However, implementation of this guide will not always completely prevent efflorescence.4.2 This guide may be augmented by related information contained in the appendixes of Specification C270, the additional material listed at the end of this specification, and other publications.1.1 This guide covers methods for reducing efflorescence potential in new masonry walls.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

Data correlating the results of tests performed using this test method with performance of cement-aggregate combinations in concrete in service, results of petrographic examination of aggregates (Guide C295), and results of tests for potential reactivity of aggregates by chemical methods have been published in Test Method C289 and should be consulted in connection with the use of results of tests performed using this test method as the basis for conclusions and recommendations concerning the use of cement-aggregate combinations in concrete. The results of tests performed using this method furnish information on the likelihood that a cement-aggregate combination is potentially capable of harmful alkali-silica reactivity with consequent deleterious expansion of concrete. Criteria to determine potential deleterious alkali-silica reactivity of cement-aggregate combinations from the results of this test method have been given in the Appendix of Specification C33. Insignificant expansion may result when potentially deleteriously reactive siliceous rocks are present in comparatively high proportion even when a high-alkali cement is used. This may occur because the alkali-silica reaction products are characterized by an alkali to silica ratio that is so low as to minimize uptake of water and swelling, or because of alkali leaching from the bars (see section on containers). Dolomitic aggregates that are deleteriously affected by the alkali-carbonate reaction when employed as course aggregate in concrete may not produce notable expansion in this test method. Also, significant expansion may occur rarely in the test for reasons other than alkali-aggregate reaction, particularly the presence of sulfates in the aggregate that produce a sulfate attack upon the cement paste, ferrous sulfides (pyrite, marcasite, or pyrrhotite) that oxidize and hydrate with the release of sulfate, and materials such as free lime (CaO) or free magnesia (MgO) in the cement or aggregate that progressively hydrate and carbonate. When expansions in excess of those given in the Appendix of Specification C33 are shown in results of tests performed using this test method, it is strongly recommended that supplementary information be developed to confirm that the expansion is actually due to alkali reactivity. Sources of such supplementary information include: (1) petrographic examination of the aggregate to determine if known reactive constituents are present; (2) examination of the specimens after tests to identify the products of alkali reactivity; and (3) tests of the aggregate for potential reactivity by chemical methods (Test Method C289). When it has been concluded from the results of tests performed using this test method and supplementary information as outlined that a given cement-aggregate combination should be considered potentially deleteriously reactive, additional studies may be appropriate to develop information on the potential reactivity of other combinations containing the same cement with other aggregates, the same aggregate with other cements, or the same cement-aggregate combination with a mineral admixture.1.1 This test method covers the determination of the susceptibility of cement-aggregate combinations to expansive reactions involving hydroxyl ions associated with the alkalies (sodium and potassium) by measurement of the increase (or decrease) in length of mortar bars containing the combination during storage under prescribed conditions of test. 1.2 Alkalies participating in the expansive reactions usually are derived from the cement; under some circumstances they may be derived from other constituents of the concrete or from external sources. Two types of alkali reactivity of aggregates are recognized: (1) an alkali-silica reaction involving certain siliceous rocks, minerals, and natural or artificial glasses and (2) an alkali-carbonate reaction involving dolomite in certain calcitic dolomites and dolomitic limestones (see Descriptive Nomenclature C294). The method is not recommended as a means to detect the latter reaction because expansions produced in the mortar-bar test by the alkali-carbonate reaction (see Test Method C586) are generally much less than those produced by the alkali-silica reaction for combinations having equally harmful effects in service. 1.3 The values stated in SI units are to be regarded as standard. When combined standards are cited, the selection of measurement system is at the user’s discretion subject to the requirements of the referenced standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Sulfates and chlorides may be found in filter plugging deposits and fuel injector deposits. The acceptability for use of the fuel components and the finished fuels depends on the sulfate and chloride content.5.2 Existent and potential inorganic sulfate and total chloride content, as measured by this test method, can be used as one measure of the acceptability of gasoline components for automotive spark-ignition engine fuel use.1.1 This test method covers an ion chromatographic procedure for the determination of the existent inorganic and potential sulfate and total inorganic chloride content in hydrous and anhydrous denatured ethanol to be used in motor fuel applications. It is intended for the analysis of ethanol samples containing between 0.55 mg/kg and 20 mg/kg of existent inorganic sulfate, 4.0 mg/kg to 20 mg/kg of potential inorganic sulfate, and 0.75 mg/kg to 50 mg/kg of total inorganic chloride.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended to give a relatively rapid indication of the potential expansive reactivity of certain carbonate rocks that may be used as concrete aggregates. The test method has been successfully used in (1) research and (2) preliminary screening of aggregate sources to indicate the presence of material with a potential for deleterious expansion when used in concrete.5.2 The test method is intended as a research and screening method rather than as the basis of a specification requirement. It is intended to supplement data from field service records, petrographic examinations according to Guide C295/C295M, and tests of aggregate in concrete according to Test Method C1105.5.3 Alkalies participating in the expansive reactions with aggregate constituents in concrete usually are derived from the hydraulic cement; under certain circumstances they may be derived from other constituents of concrete or from external sources. Two types of alkali reactivity of aggregates are recognized: (1) alkali-silica reaction involving certain siliceous rocks, minerals, and artificial glasses, and (2) alkali carbonate reaction involving dolomite in certain calcitic dolomites, dolomitic limestones, and dolostones. This test method is not suitable as a means to detect alkali-silica reaction.1.1 This test method covers the determination of the expansion of a specimen of carbonate rock while immersed in a solution of sodium hydroxide (NaOH) at room temperature. The length changes occurring during such immersion indicate the general level of reactivity of the rock and whether tests should be made to determine the effect of aggregate prepared from the rock upon the volume change in concrete.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide deals with the measurement of mobility and zeta potential in systems containing biological material such as proteins, DNA, liposomes and other similar organic materials that possess particle sizes in the nanometer scale (<100 nm).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Sulfates and chlorides can be found in filter plugging deposits and fuel injector deposits. The acceptability for use of the fuel components and the finished fuels depends on the sulfate and chloride content.5.2 Existent and potential inorganic sulfate and total chloride content, as measured by this test method, can be used as one measure of the acceptability of gasoline components for automotive spark-ignition engine fuel use.1.1 This test method covers a direct injection ion chromatographic procedure for determining existent and potential inorganic sulfate and total inorganic chloride content in hydrous and anhydrous denatured ethanol and butanol to be used in motor fuel applications. It is intended for the analysis of ethanol and butanol samples containing between 1.0 mg/kg to 20 mg/kg of existent or potential inorganic sulfate and 1.0 mg/kg to 50 mg/kg of inorganic chloride.NOTE 1: Tertiary butanol is not included in this test method. 1-butanol, 2-butanol, and isobutanol are included in the testing and research report for this test method.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Material Safety Data Sheets are available for reagents and materials. Review them for hazards prior to usage.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This standard is a compilation of terminology used in the area of hazard potential of chemicals. Terms that are generally understood or adequately defined in other readily available sources are not included.1.2 Although some of these definitions are general in nature, many must be used in the context of the standards in which they appear. The pertinent standard number is given in parentheses after the definition.1.3 In the interest of common understanding and standardization, consistent word usage is encouraged to help eliminate the major barrier to effective technical communication.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method provides a means of measuring whether or not an aerosol product may present an aspiration risk if a dispensed aerosol gets into one’s mouth.4.2 The degree of risk for aspiration of an aerosol depends both on spray pattern as well as aerosol deposition rate.24.3 This test method will be used to determine the need for child-resistant packaging of aerosol products.1.1 This test method covers a small-scale laboratory procedure to determine the aspiration potential of aerosol products by determining spray pattern and aerosol deposition rates.1.2 This test method has been developed to address a need to identify which aerosol products may present an aspiration risk such that special labeling and/or child-resistant packaging would be appropriate. Studies based on this method may allow the development of a practice to identify such aerosol products.1.3 Although this method may be useful for testing non-pressurized aerosol products, its development has been limited to testing pressurized aerosols.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method provides a procedure for evaluating the potential resistance to degradation by impact and abrasion of pervious concrete mixtures. A common failure mode of pervious concrete pavements is raveling. This test allows the comparison of the relative potential resistance to raveling of pervious concrete mixtures of varying proportions and raw materials. In addition, in the field, raveling is caused by improper paste consistency, workability loss, inadequate compaction, and improper curing—this test method does not address any of these causes. There is no known correlation between this test method and the field performance of pervious concrete.5.1.1 This information may be used to compare proposed mixture proportions, yet to be placed, but is not intended to be used for mixture qualification or jobsite acceptance testing.5.1.2 This test method is applicable to pervious concrete mixtures containing coarse aggregate with a nominal maximum size of 25 mm [1 in.] or smaller.5.1.3 This test method is only applicable to cylindrical specimens cast as described herein. The precision and bias have not been evaluated for drilled cores.1.1 This test method covers determining the potential resistance to degradation of pervious concrete by measuring the mass loss of specimens subjected to combined action of impact and abrasion in a rotating steel drum.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 The text of this test method references notes and footnotes that provide explanatory information. These notes and footnotes (excluding those in tables) shall not be considered as requirements of this test method.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged use.2)

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice provides nine figures of merit which may be used to estimate the relative thermal hazard of thermally unstable materials. Since numerous assumptions must be made in order to obtain these figures of merit, care must be exercised to avoid too rigorous interpretation (or even misapplication) of the results.5.2 This practice may be used for comparative purposes, specification acceptance, and research. It should not be used to predict actual performance.1.1 This practice covers the calculation of hazard potential figures of merit for exothermic reactions, including:(1) Time-to-thermal-runaway,(2) Time-to-maximum-rate,(3) Critical half thickness,(4) Critical temperature,(5) Adiabatic decomposition temperature rise,(6) Explosion potential,(7) Shock sensitivity,(8) Instantaneous power density, and(9) National Fire Protection Association (NFPA) instability rating.1.2 The kinetic parameters needed in this calculation may be obtained from differential scanning calorimetry (DSC) curves by methods described in other documents.1.3 This technique is the best applicable to simple, single reactions whose behavior can be described by the Arrhenius equation and the general rate law. For reactions which do not meet these conditions, this technique may, with caution, serve as an approximation.1.4 The calculations and results of this practice might be used to estimate the relative degree of hazard for experimental and research quantities of thermally unstable materials for which little experience and few data are available. Comparable calculations and results performed with data developed for well characterized materials in identical equipment, environment, and geometry are key to the ability to estimate relative hazard.1.5 The figures of merit calculated as described in this practice are intended to be used only as a guide for the estimation of the relative thermal hazard potential of a system (materials, container, and surroundings). They are not intended to predict actual thermokinetic performance. The calculated errors for these parameters are an intimate part of this practice and must be provided to stress this. It is strongly recommended that those using the data provided by this practice seek the consultation of qualified personnel for proper interpretation.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
51 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页