微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 These practices facilitate the determination of laboratory heat sealability of flexible barrier materials. While it is necessary to have a heat seal layer that provides adequate seal strength for the application, other material properties, such as the overall construction and thickness, will impact the sealing properties of the material. These practices allow the impact of changes in material properties on heat sealability to be measured.4.2 Due to differences between a laboratory sealer and manufacturing equipment (for example, scale, size of sealing area, and processing speed), there may be a significant difference between the capability and output of a laboratory heat sealer and that of manufacturing equipment. Hence, care must be taken when applying a heat seal curve study as outlined in these practices to manufacturing equipment. The heat seal curve and the corresponding seal strength data are intended to provide a starting point for determination of sealing conditions for full scale manufacturing equipment.1.1 These practices cover laboratory preparation of heat seals. These practices also cover the treatment and evaluation of heat seal strength data for the purpose of determining heat sealability of flexible barrier materials. It does not cover the required validation procedures for the production equipment.1.2 Testing of seal strength or other properties of the heat seals formed by these practices is not included in this standard. Refer to Test Method F88 for testing heat seal strength. These practices do not apply to hot tack testing, which is covered in Test Methods F1921.1.3 The practices of this standard are restricted to preparing heat seals using a sealer employing hot-bar or impulse sealing methods, or both.1.4 These practices are intended to assist in establishing starting relationships for sealing flexible barrier materials. Additional guidance may be needed on how to set up sealing conditions for flexible barrier materials on commercial/production sealing equipment.1.5 Seals may be made between webs of the same or dissimilar materials. The individual webs may be homogeneous in structure or multilayered (coextruded, coated, laminated, and so forth).1.6 Strength of the heat seal as measured by Test Method F88 is the sole criterion for assessing heat sealability employed in these practices.1.7 Other aspects of heat sealability, such as seal continuity, typically measured by air-leak, dye penetration, visual examination, microorganism penetration, or other techniques, are not covered by these practices.1.8 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The assembly force of a conduit joining system is one measure of the ease of which the conduit system can be assembled and installed in the field. This test method provides a means by which to quantify the assembly force of gasketed conduit joining systems. The results of the testing can be used to compare and categorize the assembly force of different designs of gasketed conduit joining systems.5.2 This test method is not intended for use as a quality control test.5.3 This test method can be used for comparison of gasketed conduit joining systems on the basis of assembly force. No information about joint sealing performance can be obtained from the use of this test method.5.4 This test method covers all plastic conduit with push-on joints that use flexible elastomeric gaskets located in the bell to provide the joint seal.5.5 This test method is also applicable to all fittings that are fabricated from conduit covered in 5.4 and that utilize the same type of push-on joints as the conduit covered in 5.4, and that are intended for use with the conduit types described in 5.4. For purposes of this test method, assembly force data obtained from the testing of the conduit that is the parent stock of a fitting shall apply to the fitting also.1.1 This test method covers the determination of the relative force required to assemble plastic underground conduit joints that use flexible elastomeric seals located in the bell.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification establishes the general requirements for two types, two classes, and seven grades of rubber seals used in solar energy systems employing air-heat transport, such as duct and damper seals. Particular applications may necessitate other requirements that would take precedence over these requirements when specified. The design requirement stated herein pertains only to permissible deflections of the rubber during thermal expansion or contraction of the seal in use and the tolerances in dimensions of molded and extruded seals. This specification does not address the requirements pertaining to the fabrication or installation of the seals. Type C seals are intended for use in cold climates, while Type W seals are intended for use in warm climates. Grade designations (Grades 2 to 8) represent differing degrees of hardness. Finally, Class PS are preformed rubber seals, while Class SC are sealing compounds. Each class shall conform to individually specified values of the following requirements: ultimate elongation; compression set at specified times and temperatures; resistance to heating (hardness and ultimate elongation change, and volatiles lost); resistance to ozone; resistance to low temperature; and adhesion loss.1.1 This specification covers the general requirements for the rubber seals used in solar energy systems employing air-heat transport. Examples are duct and damper seals. Particular applications may necessitate other requirements that would take precedence over these requirements when specified.NOTE 1: Rubber seals for the collector are covered in Specifications D3667 and D3771.1.2 Design requirement pertains only to permissible deflections of the rubber during thermal expansion or contraction of the seal in use and the tolerances in dimensions of molded and extruded seals.1.3 This specification does not include requirements pertaining to the fabrication or installation of the seals.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The following safety hazards caveat pertains only to the test methods portion, Section 10, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the material requirements for preformed elastomeric strip seals and the corresponding steel locking edge rail used in expansion joint sealing. The scope of this specification is limited to preformed non-reinforced strip seals that mechanically lock into structural steel locking lugs. The sealing element can consist of a single layer strip or have multiple webs depending on individual project requirements. When used on highway bridges, limits on maximum joint opening and minimum steel thicknesses need to be addressed. The adhesive-lubricant used to install the preformed seal into the steel locking edge rail shall be a one part moisture curing polyurethane compound. The elastomeric seals shall conform to the physical properties prescribed for (1) tensile strength, (2) elongation at break, (3) hardness, (4) oven aging, (5) oil swell, (6) ozone resistance, (7) low temperature stiffening, and (8) compression set. Requirements for preformed elastomeric seal dimensions, sampling, and test methods to determine compliance with the specified physical properties are given.1.1 This specification covers the material requirements for preformed elastomeric strip seals and the corresponding steel locking edge rail used in expansion joint sealing. The scope of this specification is limited to preformed non-reinforced strip seals that mechanically lock into structural steel locking lugs. The sealing element can consist of a single layer strip or have multiple webs depending on individual project requirements. The structural steel locking edge rail shall be anchored into the structure in accordance with the purchaser's specific details. While the scope of this specification is limited to the materials used in fabrication of strip sealing systems, it is recommended that a practical means of testing the watertightness aspects of the individual systems either in the field or at a testing laboratory be developed. When used on highway bridges, limits on maximum joint opening and minimum steel thicknesses need to be addressed.1.2 The values stated in the inch-pound system shall be considered as standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the physical property requirements of elastomeric seals (gaskets) used to seal the joints of precast concrete structures used in gravity and low head pressure applications. The seals shall be classified as: Class A; Class B; Class C; Class D; and Class E. All gaskets shall be extruded or molded in such a manner that any cross-section will be dense, homogeneous, and free of porosity, blisters, pitting, or other imperfections. The gaskets shall be fabricated from an elastomeric material meeting the appropriate classification physical property requirements. The following test methods shall be performed to conform to the specified requirements: tensile strength and elongation; hardness; compression set; accelerated aging; water absorption; ozone resistance; oil immersion testing; and splice strength classification.1.1 This specification covers the physical property requirements of elastomeric seals (gaskets) used to seal the joints of precast concrete structures conforming to Specifications C14, C14M, C118, C118M, C361, C361M, C443, C443M, C505, C505M, or C1628 used in gravity and low head pressure applications.1.2 Requirements are given for natural or synthetic rubber gaskets, or a combination of both.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 The following precautionary caveat pertains only to the test method portion, Section 8, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM F19-21 Standard Test Method for Tension and Vacuum Testing Metallized Ceramic Seals (Withdrawn 2023) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 This test method covers procedures for conducting tension and vacuum tests on metal-ceramic seals.4.2 This test method is not to be considered as an absolute tension test for the ceramic.4.3 This test method is suitable for quality control and research and development use.AbstractThis test method establishes the standard procedures for conducting tension and vacuum tests on metal-ceramic seals to determine the bond strength of brazed, metalized ceramics. This test method is, however, not to be considered as an absolute tension test for the ceramic. This method requires the use of appropriate testing machines and various types of gripping devices.1.1 This test method covers procedures for conducting tension and vacuum tests on metal-ceramic seals to determine the bond strength of brazed, metallized ceramics.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers thermoplastic elastomeric seals (gaskets) used to seal the push-on joints of plastic pipe and fittings used for gravity and low-pressure applications. The gasket shall be fabricated from a high-grade thermoplastic elastomer meeting the following physical property requirements: tensile strength, elongation, hardness, low-temperature hardness, ozone resistance, accelerated aging, water immersion, and force decay or stress relaxation. All gaskets shall be extruded or molded in such a manner that any cross section will be dense, homogeneous, and free of porosity, blisters, pitting, or other imperfections.1.1 This specification covers thermoplastic elastomeric seals (gaskets) used to seal the joints of plastic pipe and fittings used for gravity and low-pressure applications.2 This specification refers to push-on joints that require no internal or external pressure to effect the initial seal.1.2 Requirements are given for thermoplastic elastomers.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 The following precautionary caveat pertains only to the test methods portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers a lubricant suitable for facilitating the insertion and positioning of preformed elastomeric compression seals in prepared voids (usually contraction joints) in concrete pavements. The lubricant shall be based on polychloroprene, containing only soluble phenolic resins blended together with antioxidants and acid acceptors in a suitable mixture of organic solvents. The requirements of the lubricant are based on the performance of the lubricant as measured by its solids content, homogeneity, consistency and drying rate.1.1 This specification covers a lubricant suitable for facilitating the insertion and positioning of preformed elastomeric compression seals in prepared voids (usually contraction joints) in concrete pavement.1.2 The requirements of the lubricant are based on the performance of the lubricant as measured by its solids content, homogeneity, consistency, and drying rate.1.3 The values stated in inch-pound units are to be regarded as the standard. The metric equivalents of U.S. customary units may be approximate.1.4 The following precautionary caveat pertains only to the test method portion, Section 7 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Underground electrical and communication conduit should be impervious to groundwater in order to prevent damage to conductors and utility vaults. The bladder test described in this test method may be used to qualify potential gasketed conduit systems by indicating whether the joint system will prevent water infiltration.3.2 This test method can be used to qualify joints for plastic underground conduits using flexible elastomeric seals. However, it should not be assumed that a joint system that passes this test method will be able to seal under cases of misinstallation or abuse, or both.3.3 This test method covers all of the following gasketed conduit types: encased burial (EB) excluding EB20, direct burial (DB), telecommunications, cable television, and Schedule 40 conduit and Schedule 80 conduit. Trade sizes covered are 2-in. nominal size and larger. (See UL 651; NEMA TC-2, TC-6, and TC 8; and Specification F512.)3.4 This test method also covers fittings that are intended for use with the conduit types described in 3.3 and which use flexible elastomeric seals.1.1 This test method covers the determination of the water infiltration resistance of gasketed plastic underground conduit joints using a pressurized water bladder apparatus.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Among the factors affecting shaft seal life are the ability to retain elasticity and compensate for shaft eccentricity, ability to recover from bending, and resistance to wear and the swelling effects of contact fluids. In-service testing of candidate materials is time consuming and therefore costly. Measurement of recovery from bending after exposure in fluids at elevated temperatures provides a means of quickly assessing the material's potential and acceptability for use. Comparative recovery data may then be screened and optimum performing compounds selected for further improvement or seal fabrication. It has been found that good to excellent correlation exists between a material's ability to recover from bending and sealing effectiveness.4.2 This method is designed to measure the recovery of different rubber compounds after aging in any liquid medium, including hydraulic oils and water. This method can also be used to test rubber compounds after aging in air. Test liquids should be chosen based on the intended end use.1.1 This test method covers a procedure to determine the recovery response of rubber after particular bending deformation, subsequent to aging in selected media at a specified temperature, and for a specified time period, thus providing a measure of the relative performance potential of compounds used in the manufacture of shaft seals.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the general requirements for materials used in preformed rubber seals that contact the circulating liquid in solar energy systems. Rubber seal can be classified into types, grades and classes. It has two kinds according to what climate they should be used: Type C which is intended for use in cold climates and Type W which is intended for use in warm climates. Its grade designations represent differing degrees of hardness such as Grade 3, Grade 4, Grade 5, Grade 6, Grade 7 and Grade 8. As for the classes, it should be determined into 3 kinds. Class A for seals used with aqueous liquid at a certain maximum service temperature. Class AT for seals used with aqueous liquids at an above maximum service temperature and class N for use with nonaqueous liquids. Different tests shall be conducted in order to determine the following properties of rubber seals in liquid heat-transport systems: compression, resistance to heating, hardness, ultimate elongation, volume, resistance to ozone, resistance to low temperature, and resistance to liquid.1.1 This specification covers the general requirements for materials used in preformed rubber seals that contact the circulating liquid in solar energy systems. Particular applications may necessitate other requirements that would take precedence over these requirements when specified.1.2 This specification does not include requirements pertaining to the design, fabrication, or installation of the seals.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the material requirements for preformed polychloroprene elastomeric joint seals proposed for use in bridges. The multiple-web seals function by compression of the seal between the faces of the joint with the seal folding inward at the top. The seal is installed with a lubricant and is designed to seal the joint and reject incompressibles. The materials shall also conform to the physical properties prescribed herein such as tensile strength, elongation, hardness, ozone resistance, low-temperature recovery, high-temperature recovery, and compression-deflection properties.1.1 This specification covers the material requirements for preformed polychloroprene elastomeric joint seals for bridges. The seal consists of a multiple-web design composed of polychloroprene and functions only by compression of the seal between the faces of the joint with the seal folding inward at the top to facilitate compression. The seal is installed with a lubricant adhesive and is designed to seal the joint and reject incompressibles.NOTE 1: This specification may not be applicable for seals whose height is less than 90 % of its nominal width.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The guide provides recommendations for substrates and methods of surface preparation to be used in comparative tests of building seals and sealants.1.1 This guide describes the recommended standard substrates and their recommended surface preparation for use in standard tests of building seals and sealants.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers joints for plastic pipe systems intended for drain, and gravity sewerage pipe at internal or external pressures less than a certain ft. head using flexible watertight elastomeric seals. The joints are classified into two types based on effecting watertightness through compression of an elastomeric seal or ring: push-on-joint is a joint in which an elastomeric ring gasket is compressed in the annular space between a bell end or socket and a spigot end of pipe and mechanical joint is a joint made using mechanical means or devices to develop a pressure seal. Joints shall not leak when subjected to the internal and external hydrostatic tests. All surfaces of the joint upon or against which the gasket bears shall be smooth and free of cracks, fractures, or imperfections. The gasket shall be the sole element depended upon to make the joint flexible and watertight. The gasket shall be a continuous elastomeric ring. In mechanical joints, the pipe spigot shall have a wall thickness sufficient to withstand, without deformation or collapse, the compressive force exerted when the fitting is tightened. Some joint designs provide for the angular deflection of a pipe joint, without reducing watertightness. Where greater deflections are required than permitted by the joint design, suitable fittings must be provided. The joint components shall be of such design that they will withstand the forces caused by the compression of the gasket when joined without cracking or fracturing when tested. Dimensions of joint components and gaskets shall meet the requirements specified. Test methods such as internal pressure test and vacuum test shall be performed.1.1 This specification covers joints for plastic pipe systems intended for drain, and gravity sewerage pipe at internal or external pressures less than 25-ft head using flexible watertight elastomeric seals. This specification is intended to cover the test requirements, test methods, and acceptable materials. The test methods described for the joints are not intended to be routine quality control tests but to be reliability or performance requirements.1.2 The text of this specification references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.1.3 The following safety hazards caveat pertains only to the test method portion, paragraph 7.5, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
50 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页