微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 The combination of stress and moisture decreases the durability of most adhesive joints. Stresses in the presence of water or water vapor may cause some adhesive joints to fail at some small fraction of the stress required to break the dry joint. The time to failure for a given adhesive joint generally decreases with increasing stress, temperature, and relative humidity.4.2 This test method may be used as an accelerated screening test for assessing the durability of adhesive joints. It may be used to measure durability of adhesive joints exposed outdoors or to environmental conditions experienced by adhesive joints in service. The tests may also be used to determine the effects of various surface preparations or substrates on durabilities of adhesive joints.4.3 The durability performance of various adhesives may be compared by using this test method under uniform sets of conditions. To assess the overall durability of a given adhesive, lap-shear joints should be tested under a range of stress, relative humidity, and temperature. For a specific end use it may be possible to obtain the needed durability data using only one set of test conditions.1.1 This test method covers data for assessing the durability of adhesive lap-shear joints while stressed in contact with air, air in equilibrium with certain solutions, water, aqueous solutions, or other environments at various temperatures.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.4.1.3 The values stated in SI units are considered to be the standard. The values in parentheses are for information only.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The different combinations of SMD types, attachment medias, circuit substrates, plating options, and process variation can account for significant variation in test outcome.3.2 The SMD shear strength test is useful to manufacturers and users for determining the bond strength of the component to the membrane switch circuit.1.1 This test method covers the determination of the shear integrity of materials and procedures used to attach surface mount devices (SMD) to a membrane switch circuit.1.2 This test method is typically used to indicate the sufficient cure of conductive adhesive or underfill, or both. In general, this test method should be used prior to encapsulant. This test may also be used to demonstrate the Shear Force with encapsulation.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Continuous fiber-reinforced ceramic composites are candidate materials for structural applications requiring high degrees of wear, erosion, corrosion resistance, and damage tolerance at high temperatures.5.2 The 1D and 2D CFCCs are highly anisotropic and their transthickness tensile and interlaminar shear strength are lower than their in-plane tensile and in-plane shear strength, respectively.5.3 Shear tests provide information on the strength and deformation of materials under shear stresses.5.4 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.5.5 For quality control purposes, results derived from standardized shear test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.1.1 This test method addresses the uniaxial compression of a double-notched test specimen to determine interlaminar shear strength of continuous fiber-reinforced ceramic composites (CFCCs) at elevated temperatures. Failure of the test specimen occurs by interlaminar shear between two centrally located notches machined halfway through the thickness of the test specimen and spaced a fixed distance apart on opposing faces (see Fig. 1). Test specimen preparation methods and requirements, testing modes (force or displacement control), testing rates (force rate or displacement rate), data collection, and reporting procedures are addressed.FIG. 1 Schematic of Uniaxial Compression of Double-Notched Test Specimen for the Determination of Interlaminar Shear Strength of CFCCs1.2 This test method is used for testing advanced ceramic or glass matrix composites with continuous fiber reinforcement having a laminated structure such as in unidirectional (1D) or bidirectional (2D) fiber architecture (lay-ups of unidirectional plies or stacked fabric). This test method does not address composites with nonlaminated structures, such as (3D) fiber architecture or discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics.1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are noted in 8.1 and 8.2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The principle of measurement is based upon a reversible isothermal change in apparent viscosity with change in rate of shear produced by a change in rotational speed.4.2 Measurement is performed with a rotational viscometer under standardized conditions with rigid control of the time intervals of measurement. Viscosity readings are obtained at the end of 1 min for each rotational speed. Changes from the lowest speed to the highest speed, and return to the lowest speed, are made without stopping the instrument.1.1 This test method covers the measurement of the apparent viscosity of shear-rate-dependent adhesives using a rotational viscometer.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method may be used as an accelerated screening test for assessing the strength properties of adhesives and adhesive joints at subzero temperatures. This test method may also be used to determine the effects of various surface preparations, substrates, or adhesive systems on the durability of the adhesive joints at subzero temperatures.4.2 Tensile shear strengths of various adhesives, surface preparations, and substrates may be compared by using this test method for uniform sets of conditions. To assess the overall tensile shear strength of a given adhesive, surface preparation, and substrate should be tested under a range of stress and temperatures. For a specific end use, the needed strength properties using only one set of test conditions may be obtained.4.3 The misuse of strength values obtained from this test method as design-allowable stress values for structural joints could lead to product failure, property damage, and human injury.4.3.1 The apparent shear strength of an adhesive obtained from a given small single-lap specimen may differ from that obtained from a joint made with different adherends or by a different bonding process. The normal variation of temperature and moisture in the service environment causes the adherends and the adhesive to swell or shrink. The adherends and adhesive are likely to have different thermal and moisture coefficients of expansion. Even in small specimens, short-term environment changes can induce internal stresses of chemical changes in the adhesive that permanently affect the apparent strength and other properties of the adhesive.4.3.2 The problem of predicting joint behavior in a changing environment is even more difficult if a different type of adherend is used in a larger structural joint than was used in the small specimen.4.3.3 The apparent shear strength measured with a single-lap specimen is not suitable for determining design-allowable stresses for designing structural joints that differ in any manner from the joints tested without thorough analysis and understanding of the joint and adhesive behaviors.4.3.4 Single-lap tests may be used for comparing and selecting adhesives or bonding processes for susceptibility to fatigue and environmental changes, but such comparisons must be made with great caution since different adhesives may respond differently in different joints. See Guide D4896 for further discussion of the concepts relative to interpretation of adhesive-bonded single-lap-joints.1.1 This test method covers the determination of the comparative shear strength of adhesives for bonding metals when tested on a standard specimen and under specified conditions of preparation and testing at extreme subzero temperatures.1.2 This test method is applicable to the temperature range from -267.8 to -55°C (-450 to -67°F).1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautions are given in 8.3.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The tackiness test is designed for quantifying how sticky or non-sticky a material is at a certain temperature. The test should be run at various temperatures expected in the field for tack coat materials. If the results show the residue is tacky at pavement temperatures, the material may not be suitable for applications like less-tracking tack coats and bond coats.5.2 Determining the temperature that the residue becomes tacky by increasing the temperature in successive testing can give formulators an indicator of performance.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the determination of pull-off force and pull-off work of asphalt binders and emulsified asphalt residue by means of pull-off testing. The tackiness test is conducted using the dynamic shear rheometer (DSR) at one or more temperatures.NOTE 1: This standard may be used for unconditioned material or material conditioned in accordance with Test Method D2872. The majority of development work on this test method was performed on unconditioned material. The emulsified asphalt residue should never be conditioned.1.2 A precision and bias statement for this standard has not been developed at this time. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method may be used for material development, characterization, design data generation, and quality control purposes. It is specifically appropriate for determining the modulus of advanced ceramics that are elastic, homogeneous, and isotropic.5.1.1 This test method is nondestructive in nature. Only minute stresses are applied to the specimen, thus minimizing the possibility of fracture.5.1.2 The period of time during which measurement stress is applied and removed is of the order of hundreds of microseconds. With this test method it is feasible to perform measurements at high temperatures, where delayed elastic and creep effects would invalidate modulus measurements calculated from static loading.5.2 This test method has advantages in certain respects over the use of static loading systems for measuring moduli in advanced ceramics. It is nondestructive in nature and can be used for specimens prepared for other tests. Specimens are subjected to minute strains; hence, the moduli are measured at or near the origin of the stress-strain curve with the minimum possibility of fracture. The period of time during which measurement stress is applied and removed is of the order of hundreds of microseconds. With this test method it is feasible to perform measurements at high temperatures, where delayed elastic and creep effects would invalidate modulus measurements calculated from static loading.5.3 The sonic resonant frequency technique can also be used as a nondestructive evaluation tool for detecting and screening defects (cracks, voids, porosity, density variations) in ceramic parts. These defects may change the elastic response and the observed resonant frequency of the test specimen. Guide E2001 describes a procedure for detecting such defects in metallic and nonmetallic parts using the resonant frequency method.5.4 Modification of this test method for use in quality control is possible. A range of acceptable resonant frequencies is determined for a specimen with a particular geometry and mass. Any specimen with a frequency response falling outside this frequency range is rejected. The actual modulus of each specimen need not be determined as long as the limits of the selected frequency range are known to include the resonant frequency that the specimen must possess if its geometry and mass are within specified tolerances.1.1 This test method covers the determination of the dynamic elastic properties of advanced ceramics. Specimens of these materials possess specific mechanical resonant frequencies that are determined by the elastic modulus, mass, and geometry of the test specimen. Therefore, the dynamic elastic properties of a material can be computed if the geometry, mass, and mechanical resonant frequencies of a suitable rectangular or cylindrical test specimen of that material can be measured. The resonant frequencies in flexure and torsion are measured by mechanical excitation of vibrations of the test specimen in a suspended mode (Section 4 and Figs. 1 and 4). Dynamic Young’s modulus is determined using the resonant frequency in the flexural mode of vibration. The dynamic shear modulus, or modulus of rigidity, is found using torsional resonant vibrations. Dynamic Young’s modulus and dynamic shear modulus are used to compute Poisson’s ratio.1.2 This test method is specifically appropriate for advanced ceramics that are elastic, homogeneous, and isotropic (1).2 Advanced ceramics of a composite character (particulate, whisker, or fiber reinforced) may be tested by this test method with the understanding that the character (volume fraction, size, morphology, distribution, orientation, elastic properties, and interfacial bonding) of the reinforcement in the test specimen will have a direct effect on the elastic properties. These reinforcement effects must be considered in interpreting the test results for composites. This test method is not satisfactory for specimens that have cracks or voids that are major discontinuities in the specimen. Neither is the test method satisfactory when these materials cannot be fabricated in a uniform rectangular or circular cross-section.1.3 A high-temperature furnace and cryogenic cabinet are described for measuring the dynamic elastic moduli as a function of temperature from −195 to 1200 °C.1.4 There are material-specific ASTM standards that cover the determination of resonance frequencies and elastic properties of specific materials by sonic resonance or by impulse excitation of vibration. Test Methods C215, C623, C747, C848, C1259, E1875, and E1876 may differ from this test method in several areas (for example: sample size, dimensional tolerances, sample preparation, calculation details, etc.). The testing of those materials should be done in compliance with the appropriate material-specific standards. Where possible, the procedures, sample specifications, and calculations in this standard are consistent with the other test methods.1.5 The values stated in SI units are to be regarded as the standard. The non-SI values given in parentheses are for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is useful as one element in establishing the uniformity of shipments.5.2 Viscosity is also valuable for rheological characterization of binder pitches. Binder pitch imparts consistency to carbonaceous mixes and affects their resistance to deformation. Binder pitch viscosity is important for assessing mix consistency and for evaluating the ease of mix extrusion or molding into artifacts.1.1 This test method covers the determination of the apparent shear viscosity of coal-tar and petroleum-based pitches having a Mettler softening point (SP) range of approximately 95 °C to 120 °C (see Test Method D3104).1.2 This test method is applicable only for rotational viscometers.1.3 Since this test method is based on theoretical grounds, strict adherence to details of the procedure is necessary to comply with the theoretical requirements.1.4 The values stated in SI units are to be regarded as standard.1.4.1 Exception—The values stated in conventional units (centipoise) are to be regarded as the standard for viscosity measurement only. The SI unit is the pascal second (Pa·s) and one millipascal second (mPa·s) = one centipoise (cP); centipoise is in cgs units.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Shear tests of various kinds are widely used in the reinforced plastics industry to assess the strength of the reinforcement-to-resin bond in polyester-, vinyl ester-, and epoxy-resin composites. In addition to their importance for the generation of data for research and development, quality control, and specification purposes, such tests are of fundamental value to the fibrous reinforcement industry, since they can be used to determine the potential of new sizing systems for the surface treatment of glass fibers.5.2 The in-plane shear strength of pultruded cylindrical composites is an important property from an engineering standpoint, since pultruded rod, as such, is used in many structural applications.1.1 This test method covers the determination of the in-plane shear strength of pultruded, glass-fiber reinforced, thermosetting plastic rod of diameters ranging from 19 to 32 mm (3/4 to 11/4 in.).1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Note 2 and Note 3.NOTE 1: There is no known ISO equivalent to this standard.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is useful in laboratory research on rheology of hydraulic cement systems as it has been shown to provide a paste with rheological properties similar to those obtained in a concrete from which the aggregate had been removed.4 Mixing of paste using C305 is not satisfactory as the paste is not thoroughly mixed, due to the absence of sand. In this practice the shear imparted to the cement paste is significantly higher than in C305 and therefore it is known as high-shear mixing.1.1 This practice covers the high-shear mixing of hydraulic cement pastes.1.2 The values stated in SI units or inch-pound units are to be regarded as the standard. Within the text, the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM C961-15(2024) Standard Test Method for Lap Shear Strength of Sealants Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Sealants are generally subjected to longitudinal and lateral shear stresses in end use applications. This test method measures the cohesive strength of sealants when subjected to shear stresses, and also provides information regarding the adhesive bond to the substrates being tested.1.1 This test method covers a laboratory procedure for determining the lap shear strength of sealants. It also provides information on the adhesive bond of the sealants to the tested substrates.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 The subcommittee with jurisdiction of this standard is not aware of any similar or equivalent ISO standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method evaluates the percent viscosity loss for polymer-containing fluids resulting from polymer degradation in the high shear nozzle device. Minimum interference from thermal or oxidative effects are anticipated.4.2 This test method is not intended to predict viscosity loss in field service for different polymer classes or for different field equipment. Some correlation for a specific polymer type in specific field equipment can be possible.1.1 This test method covers the measurement of the percent viscosity loss at 100 °C of polymer-containing fluids using fuel injector shear stability test (FISST) equipment. The viscosity loss reflects polymer degradation due to shear at the nozzle.NOTE 1: Test Method D2603 has been used for similar evaluation of this property. It has many of the same limitations as indicated in the significance statement. No detailed attempt has been undertaken to correlate the results by the sonic and the diesel injector methods.NOTE 2: This test method was originally published as Procedure B of Test Methods D3945. The FISST method was made a separate test method after tests of a series of polymer-containing fluids showed that Procedures A and B of Test Methods D3945 often give different results.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—PSI is mentioned in parentheses for instruments that have only PSI gauges. Horsepower, HP, is listed in parentheses since the motor labels display this value.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method permits the evaluation of shear stability with minimum interference from thermal and oxidative factors which may be present in some applications. Within the limitations expressed in the scope of this test method, it has been successfully applied to hydraulic fluids, transmission fluids, tractor fluids, and other fluids of similar applications. It has been found applicable to fluids containing both readily sheared and shear-resistant polymers. Correlation with performance in the case of automotive engine applications has, to date, not been established.1.1 This test method covers the evaluation of the shear stability of an oil containing polymer in terms of the permanent loss in viscosity that results from irradiating a sample of the oil in a sonic oscillator. This test method can be useful in predicting the continuity of this property in an oil where no change is made in the base stock or the polymer. It is not intended that this test method serve to predict the performance of polymer-containing oils in service.1.2 Evidence has been presented that correlation between the shear degradation results obtained by means of sonic oscillation and those obtained in mechanical devices can be poor. This is especially true in the case of automotive engines. Further evidence indicates that the sonic technique may rate different families of polymers in a different order than mechanical devices.2,31.3 Because of these limitations, the committee under whose jurisdiction this test method falls has developed alternative shear test methods using a diesel injector nozzle, Test Methods D5275, D6278, and D7109. While those test methods have found some utility in the evaluation of crankcase oils, the stress imparted to the sample has been found to be insufficient to shear polymers of the shear-resistant type found in aircraft hydraulic fluids.1.4 This test method is used for polymeric additive specifications, especially in the hydraulic fluid market.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers steel stud assemblies for shear reinforcement of concrete. Stud assemblies consist of either single-headed studs (Type 1) attached to a structural steel base rail by structural welding or stud welding, or double-headed studs (Type 2) mechanically crimped into a non-structural steel shape or attached to a steel plate by spot welding or tack welding. These stud assemblies are not intended for use as shear connectors in steel-concrete composite construction.NOTE 1: The configuration of the studs for stud assemblies is much different than the configuration of the headed-type studs prescribed in Clause 9, Figure 9.1 of AWS D1.1/D1.1M. Ratios of the cross-sectional areas of the head-to-shank of the AWS D1.1/D1.1M studs range from about 2.5 to 4. In contrast, this specification requires the area of the head of the studs for stud assemblies to be at least 10 times the area of the shank. Thus, the standard headed-type studs in Clause 9, Figure 9.1 of AWS D1.1/D1.1M do not conform to the requirements of this specification for use as stud assemblies for shear reinforcement.1.2 This specification is applicable for orders in either inch-pound units or in SI units.1.3 The values stated either in inch-pound or SI units are to be regarded as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with this specification.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Viscosity of drive line lubricants at low temperature is critical for both gear lubrication and the circulation of the fluid in automatic transmissions. For gear oils (GOs), the issue is whether the fluid characteristics are such that the oil will flow into the channel dug out by the submerged gears as they begin rotating and re-lubricating them as they continue to rotate. For automatic transmission fluids, torque, and tractor fluids the issue is whether the fluid will flow into a pump and through the distribution system rapidly enough for the device to function. 5.2 The low temperature performance of drive line lubricant flow characteristics was originally evaluated by the channel test. In this test, a pan was filled to a specified depth of approximately 2.5 cm and then cooled to test temperature. The test was performed by scraping a channel through the full depth of the fluid and across the length of the pan after it had soaked at test temperature for a specified time. The time it took the fluid to cover the channel was measured and reported. The channel test was replaced by Test Method D2983 in 1971. 5.3 The results of this test procedure correlate with the viscometric measurements obtained in Test Method D2983.4 The correlation obtained is: where: V   =   the apparent viscosity measured by this test method, and VD2983   =   the apparent viscosity measured by Test Method D2983. 5.3.1 The equation was obtained by forcing the fit through zero. The coefficient of variation (R2) for this correlation is 0.9948. 1.1 This test method covers the measurement of the viscosity of drive line lubricants (gear oils, automatic transmission fluids, and so forth) with a constant shear stress viscometer at temperatures from –40 °C to 10 °C after a prescribed preheat and controlled cooling to the final test temperature. The precision is stated for test temperatures from –40 °C to –26 °C. 1.2 The applicability of this particular test method to petroleum products other than drive line lubricants has not been determined. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3.1 This standard uses the SI based unit of milliPascal second (mPa·s) for viscosity which is equivalent to centiPoise (cP). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
163 条记录,每页 15 条,当前第 2 / 11 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页