微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The pullout test method is intended as a performance test to provide the user with a set of design values for the test conditions examined.5.1.1 The test method is applicable to all geosynthetics and all soils.5.1.2 This test method produces test data, which can be used in the design of geosynthetic-reinforced retaining walls, slopes, and embankments, or in other applications where resistance of a geosynthetic to pullout under simulated field conditions is important.5.1.3 The test results may also provide information related to the in-soil stress-strain response of a geosynthetic under confined loading conditions.5.2 The pullout resistance versus normal stress plot obtained from this test is a function of soil gradation, plasticity, as-placed dry unit weight, moisture content, length and surface characteristics of the geosynthetic, and other test parameters. Therefore, results are expressed in terms of the actual test conditions. The test measures the net effect of a combination of pullout mechanisms, which may vary depending on type of geosynthetic specimen, embedment length, relative opening size, soil type, displacement rate, normal stress, and other factors.5.3 Information between laboratories on precision is incomplete. In cases of dispute, comparative tests to determine if there is a statistical bias between laboratories may be advisable.1.1 Resistance of a geosynthetic to pullout from soil is determined using a laboratory pullout box.1.2 The test method is intended to be a performance test conducted as closely as possible to replicate design or as-built conditions. It can also be used to compare different geosynthetics, soil types, etc., and thereby be used as a research and development test procedure.1.3 The values stated in SI units are to be regarded as standard. The values stated in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Information on pH of soil is used as an aid in evaluating the corrosivity of a soil environment. Some metals are more sensitive to the pH of their environment than others, and information on the stability of a metal as a function of pH and potential is available in the literature.31.1 This test method covers a procedure for determining the pH of a soil in corrosion evaluations. The principle use of the test is to supplement soil resistivity measurements and thereby identify conditions under which the corrosion of metals in soil may be accentuated (see G57 – 78 (2012)).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

Computers are becoming an integral part of each testing laboratory. A variety of automated test devices which collect and store data now exist. A variety of software programs to perform calculations and produce reported results are used. There is no consistency in the formats used to store data. Consequently, it is time consuming and expensive to exchange computerized test data files among organizations. This guide presents a standard yet versatile format that can be used to exchange data across systems. This guide defines the principal data elements that are considered important and worth recording and storing permanently in a computerized data storage system from which larger databases may be prepared. These data elements are not intended to be requirements of any specific or single database. The format permits only those elements that a specific user may require. Additional data elements may be added using the general outline of this guide. Those elements must be added in a manner consistent with the definitions in this guide, such that a computer program written to follow this guide can successfully read the entire data file, including one that contains data elements not identified in this guide. This guide does not define how to obtain and record specific data. That activity is covered by each specific test method. This guide may be incomplete for some applications. It is intended that additions to the formats will be made as requests come from each ASTM subcommittee responsible for a particular standard. Those additions will be made without rendering older files unreadable. The recommended format in this guide does not require that all data elements be included in the data base. A user may elect to omit any data element without affecting the ability of the file format structure to work. However, those elements that are required in the report section of the relevant ASTM standard should be included in the standardized data file. Following ASTM recommended practice, all data are stored in SI units. 1.1 This guide covers recommended data formats for the exchange of mechanical test data for soils and rocks. From this guide, a standardized file of data can be prepared that can be read by others who use this guide.1.2 The format specified in this guide is used for the exchange of data between computer programs, users, agencies, etc. It is not necessary that test data for internal use be stored in this format, only that a program adhering to this guide have the capability to read, or write test data in this format, or both.1.3 This guide does not cover digital geospacial data which is treated Specification D 5714.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D7521-22 Standard Test Method for Determination of Asbestos in Soil Active 发布日期 :  1970-01-01 实施日期 : 

5.1 This analysis method is used for the testing of soil samples for asbestos. The emphasis is on detection and analysis of sieved particles for asbestos in the soil. Debris identifiable as bulk building material that is readily separable from the soil is to be analyzed and reported separately.5.2 The coarse fraction of the sample (>2 mm to <19 mm) may contain large pieces of asbestos-containing material that may release fibers and break down during the sieving process into smaller pieces that pass through the 2-mm sieve into the medium fraction. If this alteration of the original sample is not desired by the investigator, these pieces should be removed from the sample before sieving and returned to the coarse fraction before analysis.5.3 This test method does not describe procedures or techniques required to evaluate the safety or habitability of buildings or outdoor areas potentially contaminated with asbestos-containing materials or compliance with federal, state, or local regulations or statutes. It is the investigator's responsibility to make these determinations.5.4 Whereas this test method produces results that may be used for evaluation of sites contaminated by construction, mine, and manufacturing wastes; deposits of natural occurrences of asbestos; and other sources of interest to the investigator, the application of the results to such evaluations and the conclusions drawn there from, including any assessment of risk or liability, is beyond the scope of this test method and is the responsibility of the investigator.1.1 This test method covers a procedure to: (1) identify asbestos in soil, (2) provide an estimate of the concentration of asbestos in the sampled soil (dried), and (3) optionally to provide a concentration of asbestos reported as the number of asbestos structures per gram of sample.1.2 In this test method, results are produced that may be used for evaluation of sites contaminated by construction, mine and manufacturing wastes, deposits of natural occurrences of asbestos (NOA), and other sources of interest to the investigator.1.3 This test method describes the gravimetric, sieve, and other laboratory procedures for preparing the soil for analysis as well as the identification and quantification of any asbestos detected. Pieces of collected soil and material embedded therein that pass through a 19-mm sieve will become part of the sample that is analyzed and for which results are reported.1.3.1 Asbestos is identified and quantified by polarized light microscopy (PLM) techniques including analysis of morphology and optical properties. Optional transmission electron microscopy (TEM) identification and quantification of asbestos is based on morphology, selected area electron diffraction (SAED), and energy dispersive X-ray analysis (EDXA). Some information about fiber size may also be determined. The PLM and TEM methods use different definitions and size criteria for fibers and structures. Separate data sets may be produced.1.4 This test method has an analytical sensitivity of 0.25 % by weight with optional procedures to allow for an analytical sensitivity of 0.1 % by weight.1.5 This test method does not purport to address sampling strategies or variables associated with soil environments. Such considerations are the responsibility of the investigator collecting and submitting the sample. Appendix X2 covering elements of soil sampling and good field practices is attached.1.6 Units—The values stated in SI units are to be regarded as the standard. Other units may be cited in the method for informational purposes only.1.7 Hazards—Asbestos fibers are acknowledged carcinogens. Breathing asbestos fibers can result in disease of the lungs including asbestosis, lung cancer, and mesothelioma. Precautions should be taken to avoid creating and breathing airborne asbestos particles when sampling and analyzing materials suspected of containing asbestos.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Soil placed as engineering fill (embankments, foundation pads, road bases) is compacted to a dense state to obtain satisfactory engineering properties such as, shear strength, compressibility, or permeability. In addition, foundation soils are often compacted to improve their engineering properties. Laboratory compaction tests provide the basis for determining the percent compaction and molding water content needed to achieve the required engineering properties, and for controlling construction to assure that the required compaction and water contents are achieved.5.2 During design of an engineered fill, shear, consolidation, permeability, or other tests require preparation of test specimens by compacting at some molding water content to some unit weight. It is common practice to first determine the optimum water content (wopt) and maximum dry unit weight (γd,max) by means of a compaction test. Test specimens are compacted at a selected molding water content (w), either wet or dry of optimum (wopt) or at optimum (wopt), and at a selected dry unit weight related to a percentage of maximum dry unit weight (γd,max). The selection of molding water content (w), either wet or dry of optimum (wopt) or at optimum (wopt) and the dry unit weight (γd,max) may be based on past experience, or a range of values may be investigated to determine the necessary percent of compaction.5.3 Experience indicates that the methods outlined in 5.2 or the construction control aspects discussed in 5.1 are extremely difficult to implement or yield erroneous results when dealing with certain soils. 5.3.1 – 5.3.3 describe typical problem soils, the problems encountered when dealing with such soils and possible solutions for these problems.5.3.1 Oversize Fraction—Soils containing more than 30 % oversize fraction (material retained on the 3/4-in. (19-mm) sieve) are a problem. For such soils, there is no ASTM test method to control their compaction and very few laboratories are equipped to determine the laboratory maximum unit weight (density) of such soils (USDI Bureau of Reclamation, Denver, CO and U.S. Army Corps of Engineers, Vicksburg, MS). Although Test Methods D4914/D4914M and D5030/D5030M determine the “field” dry unit weight of such soils, they are difficult and expensive to perform.5.3.1.1 One method to design and control the compaction of such soils is to use a test fill to determine the required degree of compaction and the method to obtain that compaction, followed by use of a method specification to control the compaction. Components of a method specification typically contain the type and size of compaction equipment to be used, the lift thickness, acceptable range in molding water content, and the number of passes.NOTE 3: Success in executing the compaction control of an earthwork project, especially when a method specification is used, is highly dependent upon the quality and experience of the contractor and inspector.5.3.1.2 Another method is to apply the use of density correction factors developed by the USDI Bureau of Reclamation (2, 3) and U.S. Corps of Engineers (4). These correction factors may be applied for soils containing up to about 50 to 70 % oversize fraction. Each agency uses a different term for these density correction factors. The USDI Bureau of Reclamation uses D ratio (or D–VALUE), while the U.S. Corps of Engineers uses Density Interference Coefficient (Ic).5.3.1.3 The use of the replacement technique (Test Method D698–78, Method D), in which the oversize fraction is replaced with a finer fraction, is inappropriate to determine the maximum dry unit weight, γd,max, of soils containing oversize fractions (4).5.3.2 Degradation—Soils containing particles that degrade during compaction are a problem, especially when more degradation occurs during laboratory compaction than field compaction, as is typical. Degradation typically occurs during the compaction of a granular-residual soil or aggregate. When degradation occurs, the maximum dry-unit weight increases (1, p. 73) so that the laboratory maximum value is not representative of field conditions. Often, in these cases, the maximum dry unit weight is impossible to achieve in the field.5.3.2.1 Again, for soils subject to degradation, the use of test fills and method specifications may help. Use of replacement techniques is not correct.5.3.3 Gap Graded—Gap-graded soils (soils containing many large particles with limited small particles) are a problem because the compacted soil will have larger voids than usual. To handle these large voids, standard test methods (laboratory or field) typically have to be modified using engineering judgement.NOTE 4: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These test methods cover laboratory compaction methods used to determine the relationship between molding water content and dry unit weight of soils (compaction curve) compacted in a 4 or 6-in. (101.6 or 152.4-mm) diameter mold with a 5.50-lbf (24.5-N) rammer dropped from a height of 12.0 in. (305 mm) producing a compactive effort of 12 400 ft-lbf/ft3 (600 kN-m/m3).NOTE 1: The equipment and procedures are similar as those proposed by R. R. Proctor (Engineering News Record—September 7, 1933) with this one major exception: his rammer blows were applied as “12 inch firm strokes” instead of free fall, producing variable compactive effort depending on the operator, but probably in the range 15 000 to 25 000 ft-lbf/ft3 (700 to 1200 kN-m/m3). The standard effort test (see 3.1.4) is sometimes referred to as the Proctor Test.1.1.1 Soils and soil-aggregate mixtures are to be regarded as natural occurring fine- or coarse-grained soils, or composites or mixtures of natural soils, or mixtures of natural and processed soils or aggregates such as gravel or crushed rock. Hereafter referred to as either soil or material.1.2 These test methods apply only to soils (materials) that have 30 % or less by mass of particles retained on the 3/4-in. (19.0-mm) sieve and have not been previously compacted in the laboratory; that is, do not reuse compacted soil.1.2.1 For relationships between unit weights and molding water contents of soils with 30 % or less by mass of material retained on the 3/4-in. (19.0-mm) sieve to unit weights and molding water contents of the fraction passing 3/4-in. (19.0-mm) sieve, see Practice D4718/D4718M.1.3 Three alternative methods are provided. The method used shall be as indicated in the specification for the material being tested. If no method is specified, the choice should be based on the material gradation.1.3.1 Method A: 1.3.1.1 Mold—4-in. (101.6-mm) diameter.1.3.1.2 Material—Passing No. 4 (4.75-mm) sieve.1.3.1.3 Layers—Three.1.3.1.4 Blows per Layer—25.1.3.1.5 Usage—May be used if 25 % or less (see 1.4) by mass of the material is retained on the No. 4 (4.75-mm) sieve.1.3.1.6 Other Usage—If this gradation requirement cannot be met, then Method C may be used.1.3.2 Method B: 1.3.2.1 Mold—4-in. (101.6-mm) diameter.1.3.2.2 Material—Passing 3/8-in. (9.5-mm) sieve.1.3.2.3 Layers—Three.1.3.2.4 Blows per Layer—25.1.3.2.5 Usage—May be used if 25 % or less (see 1.4) by mass of the material is retained on the 3/8-in. (9.5-mm) sieve.1.3.2.6 Other Usage—If this gradation requirement cannot be met, then Method C may be used.1.3.3 Method C: 1.3.3.1 Mold—6-in. (152.4-mm) diameter.1.3.3.2 Material—Passing 3/4-in. (19.0-mm) sieve.1.3.3.3 Layers—Three.1.3.3.4 Blows per Layer—56.1.3.3.5 Usage—May be used if 30 % or less (see 1.4) by mass of the material is retained on the 3/4-in. (19.0-mm) sieve.1.3.4 The 6-in. (152.4-mm) diameter mold shall not be used with Method A or B.NOTE 2: Results have been found to vary slightly when a material is tested at the same compactive effort in different size molds, with the smaller mold size typically yielding larger values of density/unit weight (1, pp. 21+).21.4 If the test specimen contains more than 5 % by mass of oversize fraction (coarse fraction) and the material will not be included in the test, corrections must be made to the unit mass and molding water content of the specimen or to the appropriate field-in-place density test specimen using Practice D4718/D4718M.1.5 This test method will generally produce a well-defined maximum dry unit weight for non-free draining soils. If this test method is used for free-draining soils the maximum unit weight may not be well defined, and can be less than obtained using Test Methods D4253.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.6.1 For purposes of comparing measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.6.2 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.7 The values in inch-pound units are to be regarded as the standard. The values stated in SI units are provided for information only, except for units of mass. The units for mass are given in SI units only, g or kg.1.7.1 It is common practice in the engineering profession to concurrently use pounds to represent both a unit of mass (lbm) and a force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. This standard has been written using the gravitational system of units when dealing with the inch-pound system. In this system, the pound (lbf) represents a unit of force (weight). However, the use of balances or scales recording pounds of mass (lbm) or the recording of density in lbm/ft3 shall not be regarded as a nonconformance with this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Soil toxicity tests provide information concerning the toxicity and bioavailability of chemicals associated with soils to terrestrial organisms. As important members of the soil fauna, lumbricid earthworms and enchytraeid potworms have a number of characteristics that make them appropriate organisms for use in the assessment of potentially hazardous soils. Earthworms may ingest large quantities of soil, have a close relationship with other soil biomasses (for example, invertebrates, roots, humus, litter, and microorganisms), constitute up to 92 % of the invertebrate biomass of soil, and are important in recycling nutrients (1, 2).4 Enchytraeids contribute up to 5.2 % of soil respiration, constitute the second-highest biomass in many soils (the highest in acid soils in which earthworms are lacking) and effect considerably nutrient cycling and community metabolism (3-5). Earthworms and potworms accumulate and are affected by a variety of organic and inorganic compounds (2-10, 11-14). In addition, earthworms and potworms are important in terrestrial food webs, constituting a food source for a very wide variety of organisms, including birds, mammals, reptiles, amphibians, fish, insects, nematodes, and centipedes (15, 16, 3). A major change in the abundance of soil invertebrates such as lumbricids or enchytraeids, either as a food source or as organisms functioning properly in trophic energy transfer and nutrient cycling, could have serious adverse ecological effects on the entire terrestrial system.5.2 A number of species of lumbricids and enchytraeid worms have been used in field and laboratory investigations in the United States and Europe. Although the sensitivity of various lumbricid species to specific chemicals may vary, from their study of four species of earthworms (including E. fetida) exposed to ten organic compounds representing six classes of chemicals, Neuhauser, et al (7) suggest that the selection of earthworm test species does not affect the assessment of a chemical's toxicity markedly. The sensitivity of various enchytraeid species has not been investigated in a comparable way so far, but ecological importance and practicability reasons favor strongly the selection of a species belonging to the genus Enchytraeus.5.2.1 E. fetida is a species whose natural habitats are those of very high organic matter such as composts and manure piles. It was selected as the test species because it (1) is bred in the laboratory easily; (2) is the earthworm species used most commonly in laboratory experiments (17); (3) has been studied extensively, producing a data pool on the toxicity and bioaccumulation of a variety of compounds (2, 7, 8, 18-23); (4) has been approved for use in toxicity testing by the European Union (EU) and the Organization for Economic Cooperation and Development (OECD); and (5) has been used by the Environmental Protection Agency (EPA) for the toxicity screening of hazardous waste sites (24).5.2.2 The recommended enchytraeid test species is Enchytraeus albidus Henle 1837 (white potworm). E. albidus is one of the biggest (up to 15 mm) species of the oligochaete family Enchytraeidae and it is distributed world-wide (25, 26). E. albidus is found in marine, limnic, and terrestrial habitats, mainly in decaying organic matter (seaweed, compost) and rarely in meadows (4, 26). This broad ecological tolerance and some morphological variations might indicate that there are different races for this species. E. albidus is commercially available, sold as food for fish, can be bred easily in a wide range of organic waste materials and has a short life cycle (33 to 74 days; 27, 28). E. albidus was studied in various tests, which covered a wide range of compounds (28-30). In addition, it is currently under investigation for use in toxicity testing and soil quality assessment by the European Union (EU), the Organization for Economic Cooperation and Development (OECD), and the International Organization for Standardization (ISO). Other species of the genus Enchytraeus are also suitable, for example, E. buchholzi Vejdovsky 1879 or E. crypticus Westheide and Graefe 1992 (see Annex A4). Those species are true soil inhabitants and are smaller in size. Other species of Enchytraeus may be used, but they should be identified clearly and the rationale for their selection should be reported.5.3 Results from soil toxicity tests might be an important consideration when assessing the hazards of materials to terrestrial organisms.5.4 Information might also be obtained on the bioaccumulation of chemicals associated with soil by analysis of animal tissues for the chemicals being monitored. These results are useful for studying the biological availability of chemicals.5.5 The soil toxicity test might be used to determine the temporal or spatial distribution of soil toxicity. Test methods can be used to detect horizontal and vertical gradients in toxicity.5.6 Results of soil toxicity tests could be used to compare the sensitivities of different species.5.7 An understanding of the effect of these parameters on toxicity and bioaccumulation may be gained by varying soil characteristics such as pH, clay content, and organic material.5.8 Results of soil toxicity tests may be useful in helping to predict the effects likely to occur with terrestrial organisms in field situations.5.8.1 Field surveys can be designed to provide either a qualitative or quantitative evaluation of biological effects within a site or among sites.5.8.2 Soil surveys evaluating biological effects are usually part of more comprehensive analyses of biological, chemical, geological, and hydrographic conditions. Statistical correlation can be improved and costs reduced if subsamples of soil for laboratory toxicity tests, geochemical analyses, and community structure are taken simultaneously from the same grab of the same site.5.9 Soil toxicity and bioaccumulation tests can be an important tool for making decisions regarding the extent of remedial action necessary for contaminated terrestrial sites.1.1 This guide covers procedures for obtaining laboratory data to evaluate the adverse effects of contaminants (for example, chemicals or biomolecules) associated with soil to earthworms (Family Lumbricidae) and potworms (Family Enchytraeidae) from soil toxicity or bioaccumulation tests. The methods are designed to assess lethal or sublethal toxic effects on earthworms or bioaccumulation of contaminants in short-term tests (7 to 28 days) or on potworms in short to long-term tests (14 to 42 days) in terrestrial systems. Soils to be tested may be (1) reference soils or potentially toxic site soils; (2) artificial, reference, or site soils spiked with compounds; (3) site soils diluted with reference soils; or (4) site or reference soils diluted with artificial soil. Test procedures are described for the species Eisenia fetida (see Annex A1) and for the species Enchytraeus albidus (see Annex A4). Methods described in this guide may also be useful for conducting soil toxicity tests with other lumbricid and enchytraeid terrestrial species, although modifications may be necessary.1.2 Modification of these procedures might be justified by special needs. The results of tests conducted using atypical procedures may not be comparable to results using this guide. Comparison of results obtained using modified and unmodified versions of these procedures might provide useful information concerning new concepts and procedures for conducting soil toxicity and bioaccumulation tests with terrestrial worms.1.3 The results from field-collected soils used in toxicity tests to determine a spatial or temporal distribution of soil toxicity may be reported in terms of the biological effects on survival or sublethal endpoints (see Section 14). These procedures can be used with appropriate modifications to conduct soil toxicity tests when factors such as temperature, pH, and soil characteristics (for example, particle size, organic matter content, and clay content) are of interest or when there is a need to test such materials as sewage sludge and oils. These methods might also be useful for conducting bioaccumulation tests.1.4 The results of toxicity tests with (1) materials (for example, chemicals or waste mixtures) added experimentally to artificial soil, reference soils, or site soils, (2) site soils diluted with reference soils, and (3) site or reference soils diluted with artificial soil, so as to create a series of concentrations, may be reported in terms of an LC50 (median lethal concentration) and sometimes an EC50 (median effect concentration). Test results may be reported in terms of NOEC (no observed effect concentration), LOEC (lowest observed effect concentration) or as an ECx (concentration where x % reduction of a biological effect occurs. Bioaccumulation test results are reported as the magnitude of contaminant concentration above either the Day 0 tissue baseline analysis or the Day 28 tissues from the negative control or reference soil (that is, 2x, 5x, 10x) (see A3.9).1.5 This guide is arranged as follows:   1  Referenced Documents  2  Terminology  3  Summary of Guide  4   5  Interferences  6  Apparatus  7  Safety Precautions  8  Soil  9  Test Organism 10  Procedure 11  Analytical Methodology 12  Acceptability of Test 13  Calculation of Results 14  Report 15  Annexes     Annex A1. Eisenia fetida     Annex A2. Artificial Soil Composition     Annex A3. Bioaccumulation Testing Utilizing Eisenia fetida   Annex A4. Enchytraeid Reporduction Test (ERT)  References  1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. While some safety considerations are included in this guide, it is beyond the scope of this standard to encompass all safety requirements necessary to conduct soil toxicity tests. Specific precautionary statements are given in Section 8.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

This specification covers hubless cast iron soil pipe and fittings for use in gravity flow applications. These pipe and fittings are intended for non-pressure applications, as the selection of the proper size for sanitary drain, waste, vent, and storm drain systems allows free air space for gravity drainage. The pipe and fittings shall be iron castings suitable for installation and service for sanitary, storm drain, waste, and vent piping applications. The pipe and fittings shall meet all applicable requirements and tests given in this specification. Tensile test and chemical test shall be made to conform to the requirements specified. The pipe and fittings shall be uniformly coated with a material suitable for the purpose that is adherent, not brittle, and without a tendency to scale.1.1 This specification covers hubless cast iron soil pipe and fittings for use in gravity flow applications. It establishes standards covering material, manufacture, mechanical and chemical properties, dimensions, coating, test methods, inspection, certification, and product marking for hubless cast iron soil pipe and fittings. These pipe and fittings are intended for non-pressure applications, as the selection of the proper size for sanitary drain, waste, vent, and storm drain systems allows free air space for gravity drainage.1.2 The EDP/ASA numbers indicated in this section represent a Uniform Industry Code adopted by the American Supply Association (ASA). A group designation prefix, 022, is assigned to hubless products, followed by the four-digit identification assigned to individual items and a check digit. This system has been instituted to facilitate EDP control through distribution channels, and is to be used universally in ordering and specifying product items. Those items with no EDP numbers are either new, special, or transitory and will be assigned numbers on subsequent prints of this specification.1.3 This specification covers pipe and fittings of the following patterns and applies to any other patterns that conform with the dimensions found in Tables 1 and 2 and all other applicable requirements given in this specification.21.3.1 Lengths:  FiguresEDP/ASA Identification Numbersfor Hubless Pipe Fig. 110 ft (3.0 m) in sizes and 5 ft. (1.5 m)11/2 , 2, 3, 4, 5, 6, 8,10, 12, and 15 in. Fig. 1, Fig. 2Method of Specifying Fittings Fig. 31.3.2 Fittings: Quarter Bend Fig. 5Quarter Bend, Reducing Fig. 6Quarter Bend, with Side Opening Fig. 7Quarter Bend, with Heel Opening Fig. 8Quarter Bend, Tapped Fig. 9Quarter Bend, Double Fig. 10Quarter Bend, Long Fig. 11Short Sweep Fig. 12Long Sweep Fig. 13Long Sweep, Reducing Fig. 14Fifth Bend Fig. 15Sixth Bend Fig. 16Eighth Bend Fig. 17Eighth Bend, Long Fig. 18Sixteenth Bend Fig. 19Sanitary Tee Fig. 20Sanitary Tee with Side Opening Fig. 21Sanitary Tee with 2 in. Side Opening R or L/R and L Fig. 22Sanitary Tee, New Orleans Special with Side Opening Fig. 23Sanitary Tee with 45° Side Openings and New Orleans Fig. 24Sanitary Special Tee Tapped Fig. 25Sanitary Tapped Tee, Horizontal Twin Fig. 26Sanitary Tapped Tee, Double Vertical Fig. 27Y Branch Fig. 28Y Branch, Double Fig. 29Y Branch, Upright Fig. 30Upright Y Wide Center Florida Special Fig. 31Y Branch, Combination 1/8 Bend Fig. 32Y Branch, Combination 1/8 Bend Double Fig. 33Sanitary Cross Fig. 34Sanitary Cross with Side Opening Fig. 35Sanitary Cross, New Orleans, with Side Openings Fig. 36Sanitary Cross, New Orleans, with 45° Special and Regular Side Openings Fig. 37Sanitary Cross, Tapped Fig. 38Test Tee Fig. 39Tapped Extension Piece Fig. 40Increaser-Reducer Fig. 41Increaser-Reducer, Short Fig. 42Tapped Adapter Fig. 43Blind Plug Fig. 44Iron Body Cleanout, Tapped Fig. 45P Trap Fig. 46P Trap, Long Fig. 47P Trap, Deep Seal Fig. 48P Trap, with Primer Fig. 49P Trap, with Tapped Inlet Fig. 50Tapped Inlet, Double Fig. 51Modified Combination Wye and 1/8  Bend, Double Fig. 52Modified Combination Wye and 1/8  Bend, Double, Extended Fig. 53Two-Way Cleanout Fig. 54Twin Cleanout Fig. 55Closet Bend, Regular and Reducing Fig. 56Closet Flange Riser Fig. 57Tapping Bosses Fig. 58Double Sweep Sanitary Tee (Extended) Fig. 59Running Trap with Double Vents Fig. 60P Trap with Tapped or Hubless Side Inlet Fig. 61Vented Tub Wye Extended, Double Fig. 62Vented Tub Wye Extended Offset, Left or Right Fig. 63Vented Tub Wye Fig. 64Double Two-Way Cleanout Fig. 651.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 The committee with jurisdiction over this standard is aware of another comparable standard published by the Cast Iron Soil Pipe Institute, CISPI 301.NOTE 1: The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏
ASTM D3155-11 Standard Test Method for Lime Content of Uncured Soil-Lime Mixtures (Withdrawn 2020) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

This test method can be used to determine the lime content of uncured soil-lime mixtures.Lime content in soil-lime mixtures is needed by agencies such as highway departments, to determine lime content in soil-lime mixtures for payments to contractors, to check compliance with specifications, or to check the efficacy of quality control measures.Lime content is also needed by producers of soil-lime mixtures who have to determine lime content for production control purposes.Note 1—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the lime content of soil-lime mixtures sampled from a project under construction or at the pug-mill, or both.1.2 In soils with highly variable amounts of CaCo3 (such as caliche), it may be difficult to obtain a representative sample.1.3 The values stated in SI units are to be regarded as standard. The values stated in inch-pound units are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Measurement of soil resistivity is used for assessment and control of corrosion of buried structures. Soil resistivity is used both for the estimation of expected corrosion rates and for the design of cathodic protection systems. As an essential design parameter for cathodic protection systems, it is important to take as many measurements as necessary so as to get a sufficiently representative characterization of the soil environment to which the entire buried structure will be exposed.1.1 This test method covers the equipment and procedures for the measurement of soil resistivity, both in situ and for samples removed from the ground, for use in assessment and control of corrosion of buried structures.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. Soil resistivity values are reported in ohm-centimeter.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test methods A and B are used to estimate the permanganate natural oxidant demand exerted by the soil or aquifer solids by determining the quantity of potassium permanganate that is consumed by naturally occurring species as a function of time. Test Method C is used to estimate the permanganate total oxidant demand exerted by soil, aquifer solids, chemical contaminants or any other reduced species by determining the quantity of potassium permanganate that is consumed by all components of the bulk aquifer as a function of time. Typically, the measurement of oxidant demand is used to screen potential sites for in situ chemical oxidation (ISCO) with permanganate (Test Methods A and C) and provide information to aid in the design of remediation systems (Test Methods B and C).5.2 While some oxidizable species react relatively quickly (that is, days to weeks), others react more slower (weeks to months). Consequently, the PNODt is expected to be some fraction of the PNODmax.5.3 For ISCO injection applications, the PNOD may overestimate the demand exerted due to mass transport related issues. For soil blending applications, the PNOD is a more accurate measure of the demand exerted due to better mass to oxidant contact.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/and so forth.1.1 These test methods cover the estimation of the permanganate natural oxidant demand (PNOD) through the determination of the quantity of potassium permanganate (KMnO4) that organic matter and other naturally occurring oxidizable species present in soil or aquifer solids will consume under specified conditions as a function of time. Oxidizable species may include organic constituents and oxidizable inorganic ions, such as ferrous iron and sulfides. The following test methods are included:Test Method A—48-hour Permanganate Natural Oxidant DemandTest Method B—Permanganate Natural Oxidant Demand KineticsTest Method C—Permanganate Total Oxidant Demand1.2 These test methods are limited by the reagents employed to a permanganate natural oxidant demand (PNOD) of 40 g KMnO4 per kg soil or aquifer solids after a period of 48 hours (Methods A and C) or two weeks (Method B).1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to interpret the results of the data. It is the responsibility of the user of this standard to interpret the results obtained and to determine the applicability of these results prior to use.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Density is a key element in the phase relations, phase relationships, or mass-volume relationships of soil and rock (Appendix X1). When particle density, that is, specific gravity (Test Methods D854) is also known, dry density can be used to calculate porosity and void ratio (see Appendix X1). Dry density measurements are also useful for determining degree of soil compaction. Since water content is variable, total/moist soil density provides little useful information except to estimate the weight of soil per unit volume, for example, grams per cubic centimeter, at the time of sampling. Since soil volume shrinks with drying of swelling soils, total density will vary with water content. Hence, the water content of the soil should be determined at the time of sampling.5.2 Densities and unit weights of remolded/reconstituted specimens are commonly used to evaluate the degree of compaction of earthen fills, embankments, and the like. Dry density values are used to calculate dry unit weight values to create a compaction curve (Test Methods D698 and D1557).NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on several factors; Practice D3740 provides a means of evaluating some of these factors.1.1 These test methods describe two ways of determining the total/moist/bulk density, dry density, and dry unit weight of intact, disturbed, remolded, and reconstituted (compacted) soil specimens (Note 1). Intact specimens may be obtained from thin-walled sampling tubes, block samples, or clods. Specimens that are remolded by dynamic or static compaction procedures are also measured by these methods. These methods apply to soils that will retain their shape during the measurement process and may also apply to other materials such as soil-cement, soil-lime, soil-bentonite or solidified soil-bentonite-cement slurries. It is common for the density to be less than the value based on tube or mold volumes, or of in situ conditions after removal of the specimen from sampling tubes and compaction molds. This change is due to the specimen swelling after removal of lateral pressures.NOTE 1: The adjectives total, moist, wet or bulk are used to represent the density condition. In some professions, such as Soil Science and Geology, the term “bulk density” usually has the same meaning as dry density. In the Geotechnical and Civil Engineering professions, the preferred adjective is total over moist and bulk when referring to the total mass of partially saturated or saturated soil or rock per unit total volume. For more detailed information regarding the term density, refer to Terminology D653.1.1.1 Method A (Water Displacement)—A specimen is coated in wax and then placed in water to measure the volume by determining the quantity of water displaced. The density and unit weight are then calculated based on the mass and volume measurements. Do not use this method if the specimen is susceptible to surface wax intrusion.1.1.2 Method B (Direct Measurement)—The dimensions and mass of a specimen are measured. The density and unit weight are then calculated using these direct measurements. Usually, the specimen has a cylindrical or cuboid shape. Intact and reconstituted/remolded specimens may be tested by this method in conjunction with strength, permeability/hydraulic conductivity (air/water) and compressibility determinations.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.2.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In the system, the pound (lbf) represents a unit of force (weight), while the units for mass is slugs. The slug unit is not given, unless dynamic (F = ma) calculations are involved.1.2.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This practice implicitly combines two separate systems of units; the absolute and the gravitational systems. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit of mass. However, the use of balances and scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.2.3 The terms density and unit weight are often used interchangeably. Density is mass per unit volume, whereas unit weight is force per unit volume. In this standard, density is given only in SI units. After the density has been determined, the unit weight is calculated in SI or inch-pound units, or both.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.3.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 There is a need to monitor the content of metals and metalloids in order to determine the presence of potential hazards. Hence, effective and efficient methods are required for the preparation of soil samples for determination of metals and metalloids present therein.5.2 This practice may be used for the digestion of soil samples that are collected during various construction and renovation and hazard survey activities in and around buildings and related structures. The practice is also suitable for the digestion of soil samples for metal and metalloid analyses collected from other locations, such as near roads and steel structures. For some other extraction procedures, see Practices D3974.5.3 This practice is intended to be used to prepare samples that have been collected for hazard assessment purposes but may be used for other applications such as, for example, monitoring the effectiveness of remediation activities.5.4 This practice may be capable of determining metals and metalloids bound within matrices, such as silica, that are not soluble in nitric acid alone.5.5 This practice includes drying and homogenization steps to help assure that reported results are representative of the sample and are independent of potential differences in soil moisture levels among different sampling locations or changing weather conditions.1.1 This practice covers drying, homogenization, and ammonium bifluoride-nitric acid digestion of soil samples and associated quality control (QC) samples for the determination of metals and metalloids using laboratory atomic spectrometry analysis techniques such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES), flame atomic absorption spectrometry (FAAS), and graphite furnace atomic absorption spectrometry (GFAAS). For ammonium bifluoride-nitric acid digestion of airborne dust and dust-wipe samples for the determination of metals and metalloids, see Practice D8344.1.2 This practice is based on U.S. EPA SW 846, Test Method 3050, Test Method D7202, and Practice D8344.1.3 This practice contains notes that are explanatory and are not part of the mandatory requirements of this standard.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
312 条记录,每页 15 条,当前第 21 / 21 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页