微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method provides a laboratory test procedure for measuring and comparing the surface flammability of materials when exposed to a prescribed level of radiant heat energy. It is intended for use in measurements of the surface flammability of materials exposed to fire. The test is conducted using small specimens that are representative, to the extent possible, of the material or assembly being evaluated. (Example: in terms of their thickness, layering, and any potential substrate.)5.2 The rate at which flames will travel along surfaces depends upon the physical and thermal properties of the material, product or assembly under test, the specimen mounting method and orientation, the type and level of fire or heat exposure, the availability of air, and properties of the surrounding enclosure.4-75.3 In this procedure, the specimens are subjected to one or more specific sets of laboratory fire test conditions. If different test conditions are substituted or the end-use conditions are changed, it is not always possible by or from this test to predict changes in the fire-test-response characteristics measured. Therefore, the results are valid only for the fire test exposure conditions described in this procedure.5.4 If the test results obtained by this test method are to be considered as part of an overall assessment of fire hazard in a building or structure, then the example criteria, concepts and procedures incorporated into Guide E1546 shall be taken into consideration.1.1 This fire-test-response standard describes the measurement of surface flammability of materials. It is not intended for use as a basis of ratings for building code purposes (see Appendix X1).1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard measures and describes the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 Fire testing of products and materials is inherently hazardous, and adequate safeguards for personnel and property shall be employed in conducting these tests. This test method may involve hazardous materials, operations, and equipment. Specific information about hazard is given in Section .NOTE 1: There is no similar or equivalent ISO standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This fire test response standard is designed to provide a basis for estimating one aspect of the fire exposure behavior of a floor-covering system installed in a building corridor. The test environment is intended to simulate conditions that have been observed and defined in full scale corridor experiments.5.2 The test is intended to be suitable for regulatory statutes, specification acceptance, design purposes, or development and research.5.3 The fundamental assumption inherent in the test is that critical radiant flux is one measure of the sensitivity to flame spread of floor-covering systems in a building corridor.5.4 The test is applicable to floor-covering system specimens that follow or simulate accepted installation practice. Tests on the individual elements of a floor system are of limited value and not valid for evaluation of the flooring system.5.5 In this procedure, the specimens are subjected to one or more specific sets of laboratory test conditions. If different test conditions are substituted or the end-use conditions are changed, it is not always possible by or from this test method to predict changes in the fire-test-response characteristics measured. Therefore, the results are valid only for the fire test exposure conditions described in this procedure.1.1 This fire-test-response standard covers a procedure for measuring the critical radiant flux of horizontally mounted floor-covering systems exposed to a flaming ignition source in a graded radiant heat energy environment in a test chamber. A specimen is mounted over underlayment, a simulated concrete structural floor, bonded to a simulated structural floor, or otherwise mounted in a typical and representative way.1.2 This fire-test-response standard measures the critical radiant flux at flame-out. It provides a basis for estimating one aspect of fire exposure behavior for floor-covering systems. The imposed radiant flux simulates the thermal radiation levels likely to impinge on the floors of a building whose upper surfaces are heated by flames or hot gases, or both, from a fully developed fire in an adjacent room or compartment. The standard was developed to simulate an important fire exposure component of fires that develop in corridors or exitways of buildings and is not intended for routine use in estimating flame spread behavior of floor covering in building areas other than corridors or exitways. See Appendix X1 for information on proper application and interpretation of experimental results from use of this test.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes that provide explanatory information. These notes and footnotes, excluding those in tables and figures, shall not be considered as requirements of this standard.1.5 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of materials, products, or assemblies under actual fire conditions.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.Specific hazard statements are given in Section 7.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Passive soil gas samplers are a minimally invasive, easy-to-use technique in the field for identifying VOCs and SVOCs in the vadose zone. Similar to active soil gas and other field screening techniques, the simplicity and low cost of passive samplers enables them to be applied in large numbers, facilitating detailed mapping of contamination across a site, for the purpose of identifying source areas and release locations, focusing subsequent soil and groundwater sampling locations, focusing remediation plans, identifying vapor intrusion pathways, tracking groundwater plumes, and monitoring remediation progress. Data generated from passive soil gas sampling are semi-quantitative and are dependent on numerous factors both within and outside the control of the sampling personnel. Key variables are identified and briefly discussed in the following sections.NOTE 1: Additional non-mandatory information on these factors or variables are covered in the applicable standards referenced in Section 2, and the footnotes and Bibliography presented herewith.5.2 Application—The techniques described in this practice are suitable for sampling soil gas with sorbent samplers in a wide variety of geological settings for subsequent analysis for VOCs and SVOCs. The techniques also may prove useful for species other than VOCs and SVOCs, such as elemental mercury, with specialized sorbent media and analysis.5.2.1 Source Identification and Spatial Variability Assessment—Passive soil gas sampling can be an effective method to identify contaminant source areas in the vadose zone and delineate the extent of contamination. By collecting samples in a grid with fewer data gaps, the method allows for an increase in data density and, therefore, provides a high-resolution depiction of the nature and extent of contamination across the survey area. By comparing the results, as qualitative or quantitative, from one location to another, the relative distribution and spatial variability of the contaminants in the subsurface can be determined, thereby improving the conceptual site model. Areas of the site reporting non-detects can be removed from further investigation, while subsequent sampling and remediation can be focused in areas determined from the PSG survey to be impacted.5.2.2 Monitoring—Passive soil gas samplers are used to monitor changes in site conditions (for example, new releases on-site, an increase in contaminant concentrations in groundwater from onsite or off-site sources, and effectiveness of remedial system performance) as reflected by the changes in soil gas results at fixed locations over time. An initial set of data is collected to establish a baseline and subsequent data sets are collected for comparison. The sampling and analytical procedures should remain as near to constant as possible so significant changes in soil gas results can be attributed to those changes in subsurface contaminant levels at the site that will then warrant further investigation to identify the cause.5.2.3 Vapor Intrusion Evaluation—Passive soil gas sampling can be used to identify vapor migration and intrusion pathways (see Practice E2600), with the data providing a line of evidence on the presence or absence of the compounds in soil vapor, the nature and extent in relation to potential receptors, and whether a vapor pathway is complete. Sorbent samplers can be placed beneath the slab or in close proximity to buildings to collect time-integrated samples targeting VOCs and SVOCs at concentrations often lower than can be achieved with active soil gas sampling methods.5.3 Limitations—Passive soil gas data are reported in mass of individual compounds or compound groups identified per sample location, with the reporting units generally in nanograms (ng) or micrograms (μg) per sampler and not a concentration (see 6.8). Ideally, the data produced using this method will be representative of time-weighted soil gas concentrations, present in the vicinity of the PSG sampler and sorbed on the sampler during the exposure period; however, non-uniformity of sampler design, starvation effects during sample collection, or an insufficient amount of sorbent that results in saturation of the sorbent surface area, or combinations thereof, will affect the relationship between sorbed mass and soil gas concentrations present. The degree to which these data are representative of any larger areas or different times depends on numerous site-specific factors. In general, information obtained from a passive soil gas sampling program alone is not sufficient to support a quantitative determination of soil gas concentrations.5.4 Sampler Design—Passive soil gas is an effective investigatory/monitoring tool if the appropriate quality controls are included in the technology design, which includes uniformity in the construction of the sampler. At a minimum, controls should be in place to ensure that (1) the appropriate sorbents with hydrophobic properties are used to target the compounds of concern (see Practice D6196), (2) materials used to house the sorbents are chemically-inert, non-reactive or corrosive, and will not off-gas compounds or act as competing sorbents (see Guide D5314, paragraph 6.5.3), and (3) the sorbents are housed in suitable containers that protect the sorbents, allow diffusion of the soil gas to the sorbents, and facilitate installation of the sampler to the desired sampling depth.5.4.1 Sampler Conditioning—Before being sent to the field for deployment, the PSG sampler should be conditioned to remove any potential contamination present on or in the sorbent and sampler materials or both encountered during sampler construction or storage prior to use. The conditioning process should be one that does not damage the sorptive capability of the sorbent. Following conditioning, the sampler is then capped/resealed and stored in a container that provides adequate protection against ambient sources of contamination before and after sample collection in the field, including during transport. Preparation blanks from each batch of conditioned samplers should be analyzed to verify that the sorbents were effectively conditioned and do not retain measurable masses of target compounds above reporting limits. Furthermore, when trip blanks, which are included with all shipments to and from the field, report non-detects for the targeted compounds, these QC samples provide additional evidence that the samplers were conditioned to have no measurable mass of target compounds and that the measurements on field samples originate from the site itself.5.5 Sampler Exposure Periods—Guidelines for PSG exposure periods for source identification, spatial variability assessment, and vapor intrusion evaluation should consider the project objectives, target compounds, required detection limits or anticipated soil gas concentrations or both, design of the passive sampler, matrix heterogeneity, soil types (total porosity), soil moisture level (water filled porosity), and depth to expected contaminants. Sites having coarse-grained dry soils, high concentrations, shallow groundwater or soil contamination or both, and volatile compounds typically require shorter exposure periods. Sites with finegrained, clays or moist soils or both, deep contaminant sources, low concentrations, or SVOCs, or combinations thereof, typically require longer exposure periods. Exposure periods typically range from days to weeks but can be as brief as one hour when high concentrations of target compounds are expected in the soil vapor.5.6 Sampler Spacing—Grid designs can consist of regularly spaced sampler locations, random or irregular spaced, and as transects or varying spatial intervals (see Guide D6311). Biased spacing in which smaller sample spacing is used in areas with known or suspected targets (that is, source areas) and large spacing in areas not believed to be impacted are also used. For large area investigations, a staged or phased sampling program can be used. The investigation begins with a widely spaced regular grid design. The initial soil gas results are reviewed and subsequent sampling is conducted at locations where the target compounds were observed. The subsequent survey design consists of more closely spaced samples to resolve the feature of interest in greater detail. Multiple phases of soil gas sampling can be combined to provide one comprehensive image of the soil gas results. Staged or phased investigations require multiple deployments adding costs to the overall investigations. However, areas of the site that have nondetectable values in the soil gas may be removed from further investigation.5.6.1 There is no prescribed or set sampler spacing appropriate for all sites, as sample spacing and survey design are based on project objectives and each site is unique. General recommendations for sampler spacing range from 3 to 30 m, with 7.5- to 15-m spacing when site knowledge is lacking. Infill sampling is recommended in areas having wider sample spacing initially.5.6.2 Site-specific information (investigation area size, groundwater depth, soil type and moisture content, purpose of the investigation, etc.) should be considered along with these guidelines in determining the grid spacing used. The selection of grid cell size (a direct function of the sampler spacing deployed in a grid pattern) is strongly dependent upon the relationship between both project confidence level and budget requirements. The tendency exists for investigators with constrained budgets to use overly large grid cell spacing. This action of “undersampling” normally results in inadequate, over-interpreted data with unsupported conclusions. Care shall be taken to avoid this problem (Guide D5314). In designing an effective soil gas survey to develop a rational conceptual site model, the survey objective balanced by budget should determine the sample spacing.5.7 Sampling Depth—Consideration of project objectives should be taken into account when determining deployment depth. It is ideal, when possible, to deploy samplers at the same depth to ensure data consistency. PSG samplers are generally installed from a depth of 15-cm to 1.0-m BLS; however, holes may be advanced to greater depths when appropriate, and samplers can also be suspended beneath surface flux chambers or in permanent vapor ports.5.8 Soil Types—In general, sandy soils tend to be more porous and permeable and, thus, require shorter exposure times. Conversely, soils with high clay contents tend to be less porous and permeable and typically have lower flux rates (see Practice D2487). Soil types vary in vapor permeability due to the differences in the number and interconnectivity of air-filled pores. The more air-filled, interconnected the pores are, the greater the potential flux of contaminants through the soil to the sampler. Starvation effects resulting in low bias are more likely to occur in low permeability soils where the flux through the soil matrix is limited.5.9 Effects of Soil Moisture—Because diffusion of vapors from subsurface sources to passive samplers relies on interconnected and air-filled pores within the soil column, soil moisture can have a significant effect on the flux of contaminants and, therefore, the mass of the contaminant available for adsorption by the sampling device. The use of hydrophobic sorbents minimizes the effect on sampler sensitivity, but does not change the impact of soil moisture on contaminant soil gas concentrations. As a result, areas of high soil moisture may have significantly lower soil gas results than areas of low soil moisture, even though subsurface concentrations are similar in both areas. Therefore, some knowledge of the soil moisture conditions can help in interpreting soil gas results. This knowledge is also useful for comparing results from subsequent surveys performed at a site.5.10 Effects of Target Compounds—In general, the larger the molecular weight of the compounds being targeted, the lower the vapor pressure and resulting concentrations in the soil gas, and therefore, the longer the required exposure time of the PSG samplers in the vadose zone.5.11 Sealing (Plugging) the Top of the Hole—Once the PSG sampler is inserted in the ground, the top of the hole is plugged with a material that will effectively seal the hole, such as aluminum foil or cork, which can then be covered with soil. For concrete or asphalt surfacing, an approximately 5-mm-thick mortar or quick-setting concrete patch above the plug can be used as an option to maintain the integrity of the surface while the sampler is in the ground. The materials used to plug the hole should not contribute compounds of concern and the seal should be flush mounted to keep the sampler safe from harm, prevent ingress of ambient air or surface water, and not interrupt ongoing site activities during the exposure period.5.12 Effects of Ambient Air While Installing/Retrieving Samplers—PSG samplers arrive at the site sealed to protect the sorbents from contaminants in ambient air during transport. Just prior to installation into the hole, and then again during retrieval, the sampler is exposed to ambient air for a brief period of time. The typical time of exposure to the ambient air is less than 15 s. In some instances, it may be necessary to collect a field blank using a PSG sampler to evaluate whether compounds in the ambient air potentially biased the results. To perform this quality control check, an identical PSG sampler is opened and exposed to the ambient air for approximately the same amount of time required to install and then later retrieve a PSG sampler at a designated location. The field blank is sealed at all other times and is transported to the laboratory along with the field samples. Care should be taken to minimize the sorbent exposure to ambient air during field activities. Obvious sources of contamination (for example, gas-powered electrical generators or vehicle exhaust) should not be in close proximity when installing/retrieving a sampler.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/and so forth. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 Purpose—This practice covers standardized techniques for passively collecting soil gas samples from the vadose zone and is to be used in conjunction with Guide D5314.1.2 Objectives—Objectives guiding the development of this practice are: (1) to synthesize and put in writing good commercial and customary practice for conducting passive soil gas sampling, (2) to ensure that the process for collecting and analyzing passive soil gas samples is practical and reasonable, and (3) to provide standard guidance for passive soil gas sampling performed in support of source identification, spatial variability/extent determinations, site assessment, site monitoring, and vapor intrusion investigations.1.3 This practice does not address requirements of any federal, state, or local regulations or guidance or both with respect to soil gas sampling. Users are cautioned that federal, state, and local guidance may impose specific requirements that differ from those of this practice.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title means only that the document has been approved through the ASTM consensus process.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 MSW composting is considered an important component in the overall solid waste management strategy. The volume reduction achieved by composting, combined with the production of a usable end product (for example, compost as a soil amendment), has resulted in municipalities analyzing and selecting source-separated organic MSW composting as an alternative to landfill disposal of biodegradable organic materials. This standard provides a method to analyze and determine the effect of materials on the compost process and the performance, utility, and feasibility of the composting process as a method for managing organic solid waste material.5 Using this method, key parameters of process performance, including theoretical oxygen uptake (ThOU) and theoretical carbon dioxide production (ThCO2P) are determined.5.2 This test method provides a simulation of the overall compost process while maintaining reproducibility. Exposing the test material with several other types of organic materials that are typically in MSW provides an environment which provides the key characteristics of the composting process, including direct measurement of organism respiration.1.1 This test method covers the biodegradation properties of a material by reproducibly exposing materials to conditions typical of source-separated organic municipal solid waste (MSW) composting. A material is composted under controlled conditions using a synthetic compost matrix and determining the acclimation time, cumulative oxygen uptake, cumulative carbon dioxide production, and percent of theoretical biodegradation over the period of the test. This test method does not establish the suitability of the composted product for any use.1.2 This test is performed at mesophilic temperatures. Some municipal compost operations reach thermophilic temperatures during operation. Thermophilic temperatures can affect the biodegradation of some materials. This test is not intended to replicate conditions within municipal compost operations that reach thermophilic temperatures.1.3 The values stated in both inch-pound and SI units are to be regarded separately as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The relative simplicity of the test method makes it applicable for a wide range of materials (4, 5). The technique is capable of fast measurements, making it possible to take data before the materials suffer thermal degradation. Alternatively, it is possible to study the effect of compositional changes such as chemical reaction or aging (6). Short measurement times permit generation of large amounts of data with little effort. The line-source probe and the accompanying test specimen are small in size, making it possible to subject the sample to a wide range of test conditions. Because this test method does not contain a numerical precision and bias statement, it shall not be used as a referee test method in case of dispute.1.1 This test method covers the determination of the thermal conductivity of plastics over a temperature range from –40 to 400°C. It is possible to measure the thermal conductivity of filled and unfilled thermoplastics, thermosets, and rubbers in the range from 0.08 to 2.0 W/m.K.1.2 The values stated in SI units shall be regarded as standard.1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish proper safety and health practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this test method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This fire-test-response standard is designed to provide a basis for estimating one aspect of the fire exposure behavior to exposed insulation installed on the floors of building attics. The test environment is intended to simulate conditions that have been observed and defined in full-scale attic experiments.5.2 The test is intended to be suitable for regulatory statutes, specification acceptance, design purposes, or development and research.5.3 The fundamental assumption inherent in the test is that critical radiant flux is one measure of the surface burning characteristics of exposed insulation on floors or between joists of attics.5.4 The test is applicable to attic floor insulation specimens that follow or simulate accepted installation practice.5.5 In this procedure, the specimens are subjected to one or more specific sets of laboratory fire test exposure conditions. If different test conditions are substituted or the anticipated end-use conditions are changed, caution should be used to predict changes in the performance characteristics measured by or from this test. Therefore, the results are strictly valid only for the fire test exposure conditions described in this procedure.5.5.1 If the test results obtained by this test method are to be considered in the total assessment of fire hazard in a building structure, then all pertinent established criteria for fire hazard assessment developed by Committee E-5 must be included in the consideration.1.1 This fire-test-response standard describes a procedure for measuring the critical radiant flux of exposed attic floor insulation subjected to a flaming ignition source in a graded radiant heat energy environment in a test chamber. The specimen is any attic floor insulation. This test method is not applicable to those insulations that melt or shrink away when exposed to the radiant heat energy environment or the pilot burner.1.2 This fire-test-response standard measures the critical radiant flux at the point at which the flame advances the farthest. It provides a basis for estimating one aspect of fire exposure behavior for exposed attic floor insulation. The imposed radiant flux simulates the thermal radiation levels likely to impinge on the floors of attics whose upper surfaces are heated by the sun through the roof or by flames from an incidental fire in the attic. This fire-test-response standard was developed to simulate an important fire exposure component of fires that develop in attics, but is not intended for use in estimating flame spread behavior of insulation installed other than on the attic floor.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 The text of this standard references notes and footnotes that provide explanatory information. These notes and footnotes, excluding those in tables and figures, shall not be considered as requirements of this standard.1.5 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers pure aluminum metal (unalloyed) for use as source material for vacuum coating applications. Aluminum metal shall conform to the following requirements: purity grade levels, grain size, dimensions, maximum impurity level, workmanship, finish, appearance, sampling, and packaging. Impurity analysis shall be performed using optical emission spectroscopy and atomic absorption.1.1 This specification covers pure aluminum metal (unalloyed) for use as raw material for making evaporation sources, sputtering targets, and superconducting wires.1.2 This specification sets purity grade levels, physical attributes, analytical methods, and packaging requirements.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Light source products conforming to this specification are intended to be used in conjunction with coatings specially formulated with fluorescent colorants as a system for the visual detection of defects in industrial protective coatings.4.2 Visible fluorescence from the coating enhances the contrast of coating irregularities and defects and is produced by excitation of visible-activated fluorescent colorants in the coating.4.3 Light source products with defined wavelength and intensity properties are required to produce adequate visible fluorescence for easy visual location of defects.4.4 A light source product is considered to consist of a light source component incorporated into an optical, electrical, mechanical, and power supply system that makes it suitable for use in an industrial environment. The entire light source product is subject to this standard. The light source component and any subassemblies of the light source product are not subject to this standard.4.5 This specification is limited to light source products providing excitation in the range from 400 nm to 420 nm.AbstractThis specification provides the requirements for light source products intended for excitation of fluorescent materials used as a system for detection of defects in industrial coatings. This includes the examination of both longer wavelength fluorescing primer coatings as well as non-fluorescent top coatings. Also, this specification establishes the radiometric requirements of the light source product in terms of required wavelength range and minimum irradiance. Safety requirements shall be established for the light source product necessary to ensure the product will not pose a threat to visual health. Irradiance test method shall be performed to conform to the specified requirements, in accordance to the test method.1.1 This specification provides the requirements for light source products intended for excitation of fluorescent materials used as a system for detection of defects in industrial coatings. This includes the examination of both longer wavelength fluorescing primer coatings as well as non-fluorescent top coatings.1.2 This specification establishes the radiometric requirements of the light source product in terms of required wavelength range and minimum irradiance.1.3 This specification establishes safety requirements for the light source product necessary to ensure the product will not pose a threat to visual health.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 To show compliance with 14 CFR 23.1351, you must determine the electrical system capacity.4.2 14 CFR 23.1351(a)(2) states that:4.2.1 For normal, utility, and acrobatic category airplanes, by an electrical load analysis or by electrical measurements that account for the electrical loads applied to the electrical system in probable combinations and for probable durations; and4.2.2 For commuter category airplanes, by an electrical load analysis that accounts for the electrical loads applied to the electrical system in probable combinations and for probable durations.4.3 The primary purpose of the electrical load analysis (ELA) is to determine electrical system capacity (including generating sources, converters, contactors, bus bars, and so forth) needed to supply the worst-case combinations of electrical loads. This is achieved by evaluating the average demand and maximum demands under all applicable flight conditions. A summary can then be used to relate the ELA to the system capacity and can establish the adequacy of the power sources under normal, abnormal, and emergency conditions.NOTE 1: The ELA should be maintained throughout the life of the aircraft to record changes to the electrical system, which may add or remove electrical loads to the system.4.4 The ELA that is produced for aircraft-type certification should be used as the baseline document for any subsequent changes. When possible, the basic format of the original ELA should be followed to ensure consistency in the methodology and approach.4.5 The original ELA may be lacking in certain information, for instance, time available on emergency battery. It may be necessary to update the ELA using the guidance material contained in this guide.1.1 This guide covers how to prepare an electrical load analysis (ELA) to meet Federal Aviation Administration (FAA) requirements.1.2 This guide is intended to address aircraft level electrical load analysis. Electric propulsive power load analysis was not considered in the development of this guide.1.3 The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Uranium hexafluoride is a basic material used to prepare nuclear reactor fuel. To be suitable for this purpose, the material must meet the criteria for isotopic composition. This test method is designed to determine whether the material meets the requirements described in Specifications C787 and C996.5.2 ASTM Committee C-26 Safeguards Statement:5.2.1 The material (uranium hexafluoride) to which this test method applies is subject to the nuclear safeguards regulations governing its possession and use. The analytical procedure in this test method has been designated as technically acceptable for generating safeguards accountability data.5.2.2 When used in conjunction with appropriate certified reference materials (CRMs), this procedure can demonstrate traceability to the national measurement base. However, adherence to this procedure does not automatically guarantee regulatory acceptance of the regulatory safeguards measurements. It remains the sole responsibility of the user of this test method to ensure that its application to safeguards has the approval of the proper regulatory authorities.1.1 This test method covers the isotopic analysis of uranium hexafluoride (UF6) and may be used for the entire range of 235U isotopic compositions for which standards are available.1.2 This test method is applicable to the determination of the isotopic relationship between two UF6 samples. If the abundance of a specific isotope of one sample (the standard) is known, its abundance in the other can be determined. This test method is flexible in that the number of times a given material is admitted to the ion source may be adjusted to the minimum required for a specified precision level.1.3 The sensitivity with which differences between two materials can be detected depends on the measuring system used, but ratio-measuring devices can generally read ratio-of-mol ratio differences as small as 0.0001.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
40 条记录,每页 15 条,当前第 3 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页