微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Geomembranes are used as barriers to prevent liquids from leaking from landfills, ponds, and other containments. For this purpose, it is desirable that the geomembrane have as little leakage as practical.4.2 The liquids may contain contaminants that, if released, can cause damage to the environment. Leaking liquids can erode the subgrade, causing further damage. Leakage can result in product loss or otherwise prevent the installation from performing its intended containment purpose.4.3 Geomembranes are often assembled in the field, either by unrolling and welding panels of the geomembrane material together in the field, unfolding flexible geomembranes in the field, or a combination of both.4.4 Geomembrane leaks can be caused by poor quality of the subgrade, poor quality of the material placed on the geomembrane, accidents, poor workmanship, manufacturing defects, and carelessness.4.5 Experience demonstrates that geomembranes can have leaks caused during their installation and placement of material(s) on the geomembrane.4.6 Electrical leak location methods are an effective and proven quality assurance measure to locate leaks. Such methods have been used successfully to locate leaks in electrically insulating geomembranes such as polyethylene, polypropylene, polyvinyl chloride, chlorosulfonated polyethylene, and bituminous geomembranes installed in basins, ponds, tanks, ore and waste pads, and landfill cells.4.7 The principle behind these techniques is to place a voltage across a sufficiently electrically insulating geomembrane and then locate areas where electrical current flows through leaks in the geomembrane (as shown schematically in Fig. 1). Other electrical leak paths such as pipe penetrations, flange bolts, steel drains, and batten strips on concrete and other extraneous electrical paths should be electrically isolated or insulated to prevent masking of leak signals caused by electrical short-circuiting through those preferential electrical paths. The only electrical paths should be through leaks in the geomembrane. These electrical detection methods for locating leaks in geomembranes can be performed on exposed geomembranes, on geomembranes covered with water, or on geomembranes covered with an earthen material layer.FIG. 1 Schematic of the Electrical Leak Location Method (Earthen Material-Covered Geomembrane System is Shown)1.1 This guide is intended to assist individuals or groups in assessing different options available for locating leaks in installed geomembranes using electrical methods. For clarity, this guide uses the term “leak” to mean holes, punctures, tears, knife cuts, seam defects, cracks, and similar breaches in an installed geomembrane (as defined in 3.2.6).1.2 This guide does not cover systems that are restricted to seam testing only, nor does it cover systems that may detect leaks non-electrically. It does not cover systems that only detect the presence, but not the location, of leaks.1.3 (Warning—The electrical methods used for geomembrane leak location could use high voltages, resulting in the potential for electrical shock or electrocution. This hazard might be increased because operations might be conducted in or near water. In particular, a high voltage could exist between the water or earth material and earth ground, or any grounded conductor. These procedures are potentially very dangerous, and can result in personal injury or death. The electrical methods used for geomembrane leak location should be attempted only by qualified and experienced personnel. Appropriate safety measures must be taken to protect the leak location operators as well as other people at the site.)1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice provides one way for a laboratory to develop data-based Type A estimates of uncertainty as referred to in Section A22 in Form and Style for ASTM Standards.4.2 Laboratories accredited under ISO/IEC 17025 are required to present uncertainty estimates for their test results. This practice provides procedures that use test results to develop uncertainty estimates for an individual laboratory.4.3 Generally, these test results will be from a single sample of stable and homogeneous material known as a control or check sample.4.4 The true value of the characteristic(s) of the control sample being measured will ordinarily be unknown. However, this methodology may also be used if the control sample is a reference material, in which case the test method bias may also be estimated and incorporated into the uncertainty estimate. Many test methods do not have true reference materials available to provide traceable chains of uncertainty estimation.4.5 This practice also allows for ongoing monitoring of the laboratory uncertainty. As estimates of the level of uncertainty change, possibly as contributions to uncertainty are identified and minimized, revision to the laboratory uncertainty will be possible.AbstractThis practice describes techniques for a laboratory to estimate the uncertainty of a test result using data from test results on a control sample. This practice provides one method for a laboratory to estimate Measurement Uncertainty in accordance with Section A22.3 in Form and Style for ASTM Standards. This practice describes the use of control charts to evaluate the data obtained and presents a special type of control chart to monitor the estimate of uncertainty.This practice provides one way for a laboratory to develop data-based Type A estimates of uncertainty as referred to in Section A22 in Form and Style for ASTM Standards.1.1 This practice describes techniques for a laboratory to estimate the uncertainty of a test result using data from test results on a control sample. This practice provides one method for a laboratory to estimate Measurement Uncertainty in accordance with Section A22.3 in Form and Style for ASTM Standards.1.2 Uncertainty as defined by this practice applies to the capabilities of a single laboratory. Any estimate of uncertainty determined through the use of this practice applies only to the individual laboratory for which the data are presented.1.3 The laboratory uses a well defined and established test method in determining a series of test results. The uncertainty estimated using this practice only applies when the same test method is followed. The uncertainty only applies for the material types represented by the control samples, and multiple control samples may be needed, especially if the method has different precision for different sample types or response levels.1.4 The uncertainty estimate determined by this practice represents the intermediate precision of test results. This estimate seeks to quantify the total variation expected within a single laboratory using a single established test method while incorporating as many known sources of variation as possible.1.5 This practice does not establish error estimates (error budget) attributed to individual factors that could influence uncertainty.1.6 This practice describes the use of control charts to evaluate the data obtained and presents a special type of control chart to monitor the estimate of uncertainty.1.7 The system of units for this standard is not specified. Dimensional quantities in the standard are presented only as illustrations of calculation methods. The examples are not binding on products or test methods treated.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Petrographic examinations are made for the following purposes:5.1.1 To determine the mineralogy of the material that may be observed by petrographic methods (in this method, by use of XRD) and that may have a bearing on the performance of the material in its intended use.5.1.2 To determine the relative amounts of the constituents of the sample which is essential for proper evaluation of the sample when the constituents may differ significantly in properties that have a bearing on the performance of the material in its intended use.5.1.3 This method helps to evaluate mineral aggregate sources for suitability as a material to be used for construction, renovation, or modification of equine surfaces. The information gathered will allow for the comparison of the composition of new mineral sources with samples of other mineral aggregate from one or more sources, for which test data or performance records are available.5.2 This method may be used by a petrographer employed directly by those for whom the examination is made. The employer should tell the petrographer, in as much detail as necessary, the purposes and objectives of the examination, the kind of information needed, and the extent of examination desired. Pertinent background information, including results of prior testing, should be made available. The petrographer’s advice and judgment should be sought regarding the extent of the examination.5.3 This method may form the basis for establishing arrangements between a purchaser of consulting petrographic service and the petrographer. In such a case, the purchaser and the consultant should together determine the kind, extent, and objectives of the examination and analyses to be made and should record their agreement in writing. The agreement may stipulate specific determinations to be made, observations to be reported, funds to be obligated, or a combination of these or other conditions.1.1 X-Ray diffraction (XRD) is a tool for identifying minerals, such as quartz and feldspar, and types of clay present in bulk samples of equine surfaces. Determining the mineralogy of a given bulk sample provides insight into surface properties, such as abrasion resistance by comparing the relative differences of hardness of the various mineral fractions such as quartz or feldspar or the plasticity differences in clay minerals such as smectite or kaolinite. XRD techniques are qualitative in nature and only semi-quantitative.1.2 Particle size distribution analyses methods including hydrometer tests to determine proportions of sand, silt, and clay fractions based upon particle size but are not able to distinguish particles by shape or mineralogy of materials. In addition to a qualitative detection of minerals present in a sample, XRD methods are also semi-quantitative and also yield important data on the relative proportion of particular minerals present.1.3 XRD techniques are generally semi-quantitative in nature. Even so, such semiquantitative data is useful in determining relative proportions of each mineral type. This method is also semi-qualitative in nature as it is geared for the determination or mineral groups. For example, it will determine the relative amount of alkali feldspars (such as K-feldspar or Nafeldspar) from Plagioclase-feldspar but not necessarily if the Plagioclase-feldspar is albite or anorthite nor whether the K-feldspar is orthoclase of microcline. Likewise, it will differentiate smectite from mica from kaolinite but not whether the smectite is montmorillonite or saponite. More precise determination of mineral species by XRD is possible but involves more advanced preparation and treatment methods than what is within the scope of this standard.1.4 The XRD method herein primarily makes use of “Glass Slide Method” but may be subject to modification depending on the user’s needs.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

6.1 This test method provides standard procedures for experimentally determining the XEC for use in the measurement of residual and applied stresses using x-ray diffraction techniques. It also provides a standard means of reporting the precision of the XEC.6.2 This test method is applicable to any crystalline material that exhibits a linear relationship between stress and strain in the elastic range, that is, only applicable to elastic loading.6.3 This test method should be used whenever residual stresses are to be evaluated by x-ray diffraction techniques and the XEC of the material are unknown.1.1 This test method covers a procedure for experimentally determining the x-ray elastic constants (XEC) for the evaluation of residual and applied stresses by x-ray diffraction techniques. The XEC relate macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. The XEC are a function of the elastic modulus, Poisson’s ratio of the material and the hkl plane selected for the measurement. There are two XEC that are referred to as 1/2 S2hkl and S1 hkl.1.2 This test method is applicable to all x-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing.1.3 This test method is applicable to all x-ray diffraction techniques for residual stress measurement, including single, double, and multiple exposure techniques.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is intended to be used for compliance with compositional specifications for manganese content in iron ores, concentrates, and agglomerates. It is assumed that all who use these procedures will be trained analysts capable of performing common laboratory procedures skillfully and safely. It is expected that work will be performed in a properly equipped laboratory and that proper waste disposal procedures will be followed. Appropriate quality control practices must be followed such as those described in Guide E882.1.1 These test methods cover the determination of manganese in iron ores, concentrates, and agglomerates. The following two test methods are included:  Sections Test Method A (Pyrophosphate (Potentiometric))  8 – 15 Test Method B (Periodate (Spectrophotometric)) 16 – 221.2 Test Method A covers the determination of manganese in the range from 2.5 % to 15.0 %. Test Method  B covers the determination of manganese in the range of 0.01 % to 5.00 %.NOTE 1: The lower limit for this test method is set at 50 % relative error for the lowest grade material tested in the interlaboratory study in accordance with Practice E1601.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 When this test method is used to measure the threshold impact sensitivity of a material, a relative sensitivity assessment is obtained which permits the ranking of materials.4.2 This test method may also be used for acceptance-testing materials for use in liquid oxygen systems. Twenty separate samples of the material submerged in liquid oxygen are subjected to 98 J (72 ft·lbf) or as specified. Impact energy delivered through a 12.7-mm (1/2-in.) diameter contact. More than one indication of sensitivity is cause for immediate rejection. A single explosion, flash, or other indication of sensitivity during the initial series of 20 tests requires that an additional 40 samples be tested without incident to ensure acceptability of the material.4.3 The threshold values are determined by this test method at ambient pressure. The sensitivity of materials to mechanical impact is known to increase with increasing pressure. Since most liquid oxygen systems operate at pressures above ambient condition, some consideration should be given to increased sensitivity and reactivity of materials at higher pressure when selecting materials for use in pressurized system.1.1 This method2,3,4 covers the determination of compatibility and relative sensitivity of materials with liquid oxygen under impact energy using the Army Ballistic Missile Agency (ABMA)-type impact tester. Materials that are impact-sensitive with liquid oxygen are generally also sensitive to reaction by other forms of energy in the presence of oxygen.1.2 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Transmutation Processes—The effect on materials of bombardment by neutrons depends on the energy of the neutrons; therefore, it is important that the energy distribution of the neutron fluence, as well as the total fluence, be determined.1.1 This practice describes procedures for the determination of neutron fluence rate, fluence, and energy spectra from the radioactivity that is induced in a detector specimen.1.2 The practice is directed toward the determination of these quantities in connection with radiation effects on materials.1.3 For application of these techniques to reactor vessel surveillance, see also Test Methods E1005.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Detailed methods for individual detectors are given in the following ASTM test methods: E262, E263, E264, E265, E266, E343, E393, E481, E523, E526, E704, E705, and E854.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice provides a protocol to compare different decontamination technologies with a standard contamination mechanism and analysis of subsequent decontamination factors/efficiencies.5.2 The use of this practice provides for the preparation of test coupons with a known amount of fixed radiological or surrogate contaminant on the surface.5.3 A standard test coupon is described and a list of potential spray equipment, contaminants, and contaminating solutions is provided within the procedure.5.4 This method describes a contamination simulation process that meets the requirements of testing performed (previously) by the U.S. Department of Energy and U.S. Environmental Protection Agency.1.1 This practice is intended to provide a basis for simulating radioactive contamination consistent with processes used to evaluate decontamination. The methods described provide a “fixed-type” radiological or surrogate contamination on porous surfaces; these methods provide a surface contamination that is not easily removed by brushing or flushing with water.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This practice is intended to be practiced primarily on porous surfaces such as concrete, marble, granite, grout, brick, tile, asphalt, vinyl floor tile, latex painted gypsum wall board and polyurethane coated wood. Preparation of non-porous substrates is not addressed, although similar methodology may be used.1.4 The chemical simulants shall not include nor generate toxic by-products as defined by U.S. Occupational Safety and Health Administration (OSHA) during preparation, application, or removal under normal conditions. A Safety Data Sheet shall be provided so that appropriate PPE can be selected.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Most analytical methods used in air pollutant measurements are comparative in nature and require calibration or standardization, or both, often with known blends of the gas of interest. Since many of the important air pollutants are reactive and unstable, it is difficult to store them as standard mixtures of known concentration for extended calibration purposes. An alternative is to prepare dynamically standard blends as required. This procedure is simplified if a constant source of the gas of interest can be provided. Permeation tubes provide this constant source, if properly calibrated and if maintained at constant temperature. Permeation tubes have been specified as reference calibration sources, for certain analytical procedures, by the Environmental Protection Agency (3).1.1 This practice describes a means for using permeation tubes for dynamically calibrating instruments, analyzers, and analytical procedures used in measuring concentrations of gases or vapors in atmospheres (1, 2).21.2 Typical materials that may be sealed in permeation tubes include: sulfur dioxide, nitrogen dioxide, hydrogen sulfide, chlorine, ammonia, propane, and butane (1).1.3 The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method can be extended to use any material that has the necessary nuclear and activation properties that suit the experimenter's particular situation. No attempt has been made to fully describe the myriad problems of counting techniques, neutron-fluence depression, and thick-foil self-shielding. It is assumed that the experimenter will refer to existing literature on these subjects. This test method does offer a referee technique (the standard gold foil) to aid the experimenter when they are in doubt of their ability to perform the radiometric technique with sufficient accuracy.4.2 The standard comparison technique uses a set of foils that are as nearly identical as possible in shape and mass. The foils are fabricated from any material that activates by an (n, γ) reaction, preferably having a cross section approximately inversely proportional to neutron speed in the thermal energy range. Some of the foils are irradiated in a known neutron field (at NIST) or other standards laboratory). The foils are counted in a fixed geometry on a stable radiation-detecting instrument. The neutron-induced reaction rate of the foils is computed from the counting data, and the ratio of the known neutron fluence rate to the computed reaction rate is determined. For any given foil, neutron energy spectrum, and counting set-up, this ratio is a constant. Other foils from the identical set can now be exposed to an unknown neutron field. The magnitude of the fluence rate in the unknown field can be obtained by comparing the reaction rates as determined from the counting data from the unknown and reference field, with proper corrections to account for spectral differences between the two fields (see Section 5). One important feature of this technique is that it eliminates the need for knowing the detector efficiency.4.3 This test method follows the Stoughton and Halperin convention for reporting thermal neutron fluence. Other conventions are the Wescott convention (followed in Test Method E481) and the Hogdahl convention. Practice E261 explains the three conventions and gives conversion formulae relating values determined by the different conventions. Reference (1)3 discusses the three thermal-neutron conventions in detail.1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to their particular situation the fundamental procedures of the following techniques.1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy.1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy.1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-temperature environments are discussed in 9.2. For those circumstances where the use of cadmium as a thermal shield is undesirable because of potential spectrum perturbations or of temperatures above the melting point of cadmium, the method described in Test Method E481 can be used in some cases. Alternatively, gadolinium filters may be used instead of cadmium. For high temperature applications in which aluminum alloys are unsuitable, other alloys such as cobalt-nickel or cobalt-vanadium have been used.1.3 This test method may be used to determine the equivalent 2200 m/s fluence rate. The accurate determination of the actual thermal neutron fluence rate requires knowledge of the neutron temperature, and determination of the neutron temperature is not within the scope of the standard.1.4 The techniques presented are suitable only for neutron fields having a significant thermal neutron component, in which moderating materials are present, and for which the average scattering cross section is large compared to the average absorption cross section in the thermal neutron energy range.1.5 Table 1 indicates the useful neutron-fluence ranges for each detector material.TABLE 1 Useful Neutron Fluence Ranges of Foil MaterialFoil Material Form ≈ Useful Range (neutrons/cm 2)Indium pure or alloyed with aluminum 103 to 1012Gold pure or alloyed with aluminum 107 to 1014Dysprosium pure or alloyed with aluminum 103 to 1010Cobalt pure or alloyed with aluminum 1014 to 10201.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice may be used to continuously demonstrate the proficiency of analytical measurement systems that are used for establishing and ensuring the quality of petroleum and petroleum products.5.2 Data accrued, using the techniques included in this practice, provide the ability to monitor analytical measurement system precision and bias.5.3 These data are useful for updating test methods as well as for indicating areas of potential measurement system improvement.5.4 Control chart statistics can be used to compute limits that the signed difference (Δ) between two single results for the same sample obtained under site precision conditions is expected to fall outside of about 5 % of the time, when each result is obtained using a different measurement system in the same laboratory executing the same test method, and both systems are in a state of statistical control.1.1 This practice covers information for the design and operation of a program to monitor and control ongoing stability and precision and bias performance of selected analytical measurement systems using a collection of generally accepted statistical quality control (SQC) procedures and tools.NOTE 1: A complete list of criteria for selecting measurement systems to which this practice should be applied and for determining the frequency at which it should be applied is beyond the scope of this practice. However, some factors to be considered include (1) frequency of use of the analytical measurement system, (2) criticality of the parameter being measured, (3) system stability and precision performance based on historical data, (4) business economics, and (5) regulatory, contractual, or test method requirements.1.2 This practice is applicable to stable analytical measurement systems that produce results on a continuous numerical scale.1.3 This practice is applicable to laboratory test methods.1.4 This practice is applicable to validated process stream analyzers.1.5 This practice is applicable to monitoring the differences between two analytical measurement systems that purport to measure the same property provided that both systems have been assessed in accordance with the statistical methodology in Practice D6708 and the appropriate bias applied.NOTE 2: For validation of univariate process stream analyzers, see also Practice D3764.NOTE 3: One or both of the analytical systems in 1.5 may be laboratory test methods or validated process stream analyzers.1.6 This practice assumes that the normal (Gaussian) model is adequate for the description and prediction of measurement system behavior when it is in a state of statistical control.NOTE 4: For non-Gaussian processes, transformations of test results may permit proper application of these tools. Consult a statistician for further guidance and information.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This guide establishes the minimum national standard for training the emergency medical technician (basic) to perform patient management techniques for patients of all ages. 1.2 This guide is one of a series which together describe the minimum training standard for the emergency medical technician (basic). 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
AS 1189.10-1982 Data processing - Vocabulary Operating techniques and facilities 被代替 发布日期 :  1970-01-01 实施日期 : 

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

4.1 General—Passive groundwater sampling has increased use since the polyethylene diffusion bag sampler was first introduced (5). As defined above, different types of passive samplers are now available with different functions and usages. The Interstate Technology Regulatory Council (ITRC) has provided several technical and regulatory documents on the use of passive groundwater sampling methods (1, 5-7). Collectively, these documents have provided information and references on the technical basis for their use, comparison of sampling results with more traditional sampling methods, descriptions of their proper use, limitations, and a survey of their acceptance and use by responding state regulators. However, the ITRC documents are older and do not include more recent assessments and publications. This Standard seeks to provide newer information on current practice and implementation of passive groundwater sampling techniques.4.1.1 Because of the large number of passive samplers that have been developed over the years for various types of environmental sampling, it is beyond the scope of this standard to discuss separately each of the methods that could or can be used to sample groundwater. Extensive literature reviews on diffusion- and accumulation-passive samplers can be found in the scientific literature (that is, 3, 8-14). These reviews provide information on a wide variety of passive sampling devices for use in air, soil vapor, and water. A review paper on the use of diffusion and accumulation-type passive samplers specifically for sampling volatile organic compounds (VOCs) in groundwater (15) includes information on other passive samplers that are not included in the ITRC documents (1, 7) and discusses their use with respect to measuring mass flux.4.2 Use—Passive samplers are deployed at a pre-determined depth, or depths, within a well for a minimum or pre-determined period of time. They should remain submerged at the target depth for their entire deployment period. All of the passive technologies described in this document rely on the sampling device being exposed to the groundwater during deployment and the continuous flushing of the open or screened interval of the well by ambient groundwater flow ((4), (5-7), 16) to produce water quality conditions in the well bore that effectively mimic those conditions in the aquifer adjacent to the screen or open interval. For samplers that require the establishment of equilibrium, it is important that the equilibration period be long enough to allow the well to recover from any disturbance caused by placing the sampler in the well and to prevent, or reduce, losses of analytes from the water sample by sampler materials due to sorption. For kinetic accumulation samplers (used as kinetic samplers), it is important that the deployment time is long enough that quantitative uptake can occur but not so long that uptake is no longer in the linear portion of the uptake curve (that is, has become curvilinear).4.2.1 As with all types of groundwater sampling methods, the appropriate use of passive methods assumes that the well has been properly located (laterally and vertically), designed, constructed, and was adequately developed (as described in Guide D5521/D5521M) and maintained (as described in Practices D5092/D5092M and D6725/D6725M, or Guide D6724/D6724M). These measures are necessary so that the well is in hydraulic communication with the aquifer.4.2.2 Each type of passive sampler has its own attributes and limitations, and thus data-quality objectives (DQOs) for the site should be reviewed prior to selecting a device. For wells in low-permeability formations, diffusive flux may become more important than advective flow in maintaining aquifer-quality water in the well.4.3 Advantages—While passive methods are not expected to replace conventional pumped sampling in all situations, they often offer a faster alternative “tool” for sampling groundwater monitoring wells because purging is eliminated from the pre-sampling procedure. Other advantages include that these samplers can be used in most wells and typically have no depth limitation. These samplers are either disposable or dedicated to a well. This eliminates or reduces the need for decontamination. Passive samplers typically reduce the logistics associated with sampling and are especially useful at sites where it is difficult to bring larger equipment (such as pumps and compressors) to the well location.4.3.1 Passive groundwater sampling techniques typically provide a lower “per-sample” cost than conventional pumped sampling methods (17-26). This is primarily because the labor associated with collecting a sample is substantially reduced and waste handling and disposal is substantially reduced. Eliminating handling and disposal of purge water is an environmental benefit and advantage.4.3.2 If there is interest in identifying contaminant stratification within the well, multiple passive samplers can be used to characterize vertical contaminant distribution with depth. Baffles or packers can be used to segregate the sampling zones and often provide better characterization of each zone. Profiling contamination with depth in a well can be informative when trying to decide where to place a single passive sampler within the well screen for long-term monitoring; placing a sampler at the mid-point of the screen may not yield a sample with the highest contaminant concentrations or one that agrees best with previous low-flow concentrations (for example, 26).4.4 Disadvantages—As with any groundwater sampling method, rapid or rigorous deployment of the sampler(s) can increase turbidity in the well. For passive groundwater samplers, this can be reduced or eliminated if the equilibration time is long enough to allow the return of the natural ambient turbidity in the well. In many cases, passive samplers are deployed at the end of a sampling event and left in the well until the next scheduled sampling event; this practice provides more than enough time for equilibration to occur. Some methods require dedicated equipment purchase which may increase the cost for the initial sampling event in order to obtain the overall cost advantage.4.5 Limitations—There are three primary limitations with passive samplers: analyte capability, sample volume, and physical size with respect to well diameter. For the diffusion and accumulation samplers, the membrane and or sorbent, respectively, determine the analyte capability of the sampler. In contrast, passive-grab samplers collect whole water samples and can be used for any analyte, subject to sample volume and physical size limitations.4.5.1 Analyte capability is often unique to individual passive samplers. In the case of diffusion-based passive samplers, the user should verify that the membrane is suitable for the analytes to be tested. ITRC (5-7) describes the analyte capability of diffusion-bases passive samplers. Two or more individual types of passive samplers can be used simultaneously to sample for a broader spectrum of analyte types.4.5.2 Passive-grab and passive-diffusion samplers collect a finite sample volume. Total sampler volume may limit the number and type of analytes that can be practically collected. Additional samplers or larger volume samplers may be available and can be used to meet the volume requirements. Also, because laboratories typically use only a small portion of the sample collected, it may be possible to provide the laboratory with a smaller sample volume. Table X1.1 provides suggested minimum volumes for several analyte classes. The laboratory should be consulted to confirm adequate sample volume during the method selection process.4.5.3 Regarding physical sizes of the sampler(s), the diameter of the sampler or combination of samplers must be able to fit in the well or multi-level sampler.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This standard provides guidance and information on passive sampling techniques for collecting groundwater from monitoring wells. Passive groundwater samplers are able to acquire a sample from the screen interval in a well, without the active transport associated with a pump or purge technique (1).2 Passive groundwater sampling is a type of no-purge groundwater sampling method where the samplers are left in the well for a predetermined period of time prior to collecting the sample.1.2 Methods for sampling monitoring wells include low-flow purging and sampling methods, traditional well-volume purging and sampling methods, post-purge grab sampling methods (for example, using a bailer), passive no-purge sampling methods, and active no-purge sampling methods such as using a bailer to collect a sample without purging the well. This guide focuses on passive no-purge sampling methodologies for collecting groundwater samples. These methodologies include the use of diffusion samplers, accumulation samplers, and passive-grab samplers. This guide provides information on the use, advantages, disadvantages, and limitations of each of these passive sampling technologies.1.3 ASTM Standard D653 provides standard terminology relevant to soil, rock, and fluids contained in them. ASTM Standard D4448 provides a standard guide to sampling groundwater wells, and ASTM Standards D5903 and D6089 provide guides for planning and documenting a sampling event. Groundwater samples may require preservation (Guide D6517), filtration (Guide D6564/D6564M), and measures to pack and ship samples (Guide D6911). Standard D7069 provides guidance on the quality control and quality assurance of sampling events. ASTM Standard D5092/D5092M provides standard practice for the design and installation of groundwater monitoring wells, ASTM Standard D5521/D5521M provides a standard guide for developing groundwater monitoring wells in granular aquifers, and D6452 provides a standard guide for purging methods used in groundwater quality investigations. Consult ASTM Standard D6724/D6724M for a guide on the installation of direct-push groundwater monitoring wells and ASTM Standard D6725/D6725M for a guide on the installation of direct-push groundwater monitoring wells with pre-pack screens.1.4 The values stated in SI Units are to be regarded as the standard. Values in inches (such as with well diameters) are given in parentheses, and are provided for information. Use of units other than SI shall not be regarded as nonconforming with this standard.1.5 This guide provides information on passive groundwater sampling in general and also provides a series of considerations when selecting a passive groundwater sampling method. However, it does not recommend a specific course of action, and not all aspects of this guide may be applicable in all field situations. This document cannot replace education or experience and should be used in conjunction with professional judgment. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

6.1 The immersion technique is frequently used to locate leaks in sealed containers. Leaks in a container can be seen independently. Leak size can be approximated by the size of the bubble. It is not suitable for measurement of total system leakage.6.2 The liquid film technique is widely applied to components and systems that can not easily be immersed and is used to rapidly locate leaks. An approximation of leak size can be made based on the type of bubbles formed, but the technique is not suitable for measuring leakage rate. It can be used with a vacuum box to test vessels which cannot be pressurized or where only one side is accessible.6.3 Accuracy—This practice is not intended to measure leakage rates, but to locate leaks on a go, no-go basis. Their accuracy for locating leaks of 4.5 × 10 −10 mol/s (1 × 10−4 Std cm3/s)2 and larger is ±5 %. Accuracy for locating smaller leaks depends upon the skill of the operator.6.4 Repeatability—On a go, no-go basis, duplicate tests by the same operator should not vary by more than ±5 % for leaks of 4.5 × 10 −9 mol/s (1 × 10−4 Std cm3/s).26.5 Reproducibility—On a go, no-go basis, duplicate tests by other trained operators should not vary by more than 10 % for leaks of 4.5 × 10 −9 mol/s (1 × 10−4 Std cm3/s)2 and larger.1.1 This practice covers procedures for detecting or locating leaks, or both, by bubble emission techniques. A quantitative measure is not practical. The normal limit of sensitivity for this test method is 4.5 × 10−10 mol/s (1 × 10−5 Std cm3/s).21.2 Two techniques are described:1.2.1 Immersion technique, and1.2.2 Liquid application technique.NOTE 1: Additional information is available in ASME Boiler and Pressure Vessel Code, Section V, Article 10-Leak Testing, and Guide E479.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
58 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页