微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers resilient connectors between reinforced concrete manhole structures, pipes, and laterals. Resilient materials for connectors and filler rings shall be manufactured from natural or synthetic rubber and shall conform to the prescribed requirements. Mechanical devices shall be made from a material or materials in combination that will ensure durability, strength, resistance to corrosion, and have properties that will ensure continued resistance to leakage. The design of pipe connectors and pipe stubs are specified. The physical properties and chemical composition shall conform to the required tests for chemical resistance, tensile strength, elongation at break, hardness, accelerated oven-aging, compression set, water absorption, ozone resistance, low-temperature brittle point, and tear resistance.1.1 This specification covers the minimum performance and material requirements for resilient connectors used for connections between reinforced concrete manholes conforming to Specification C478/C478M and pipes, between wastewater structures and pipes, and between precast reinforced concrete pipe and laterals.1.1.1 These connectors are designed to minimize leakage between the pipe and manhole, and between the pipe and lateral.1.2 The values stated in inch pound or SI units are to be regarded separately as standard. The SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.NOTE 1: This specification covers the design, material, and performance of the resilient connection only. Connections covered by this specification are adequate for hydrostatic pressures up to 13 psi (30 ft) [90 kPa (9.1 m)] without leakage when tested in accordance with Section 7. Infiltration or exfiltration quantities for an installed system are dependent upon many factors other than the connections between manhole structures and pipe, and allowable quantities must be covered by other specifications and suitable testing of the installed pipeline and system.1.3 The following precautionary caveat pertains only to the test methods portion, Section 7, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific precaution statement, see 7.2.5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers resilient connectors between reinforced concrete manhole structures, pipes, and laterals. Resilient materials for connectors and filler rings shall be manufactured from natural or synthetic rubber and shall conform to the prescribed requirements. Mechanical devices shall be made from a material or materials in combination that will ensure durability, strength, resistance to corrosion, and have properties that will ensure continued resistance to leakage. The design of pipe connectors and pipe stubs are specified. The physical properties and chemical composition shall conform to the required tests for chemical resistance, tensile strength, elongation at break, hardness, accelerated oven-aging, compression set, water absorption, ozone resistance, low-temperature brittle point, and tear resistance.1.1 This specification covers the minimum performance and material requirements for resilient connectors used for connections between precast reinforced concrete manholes conforming to Specification C478 and pipes, and between precast reinforced concrete pipe and laterals.1.1.1 These connectors are designed to minimize leakage between the pipe and manhole, and between the pipe and lateral.1.2 This specification is the SI companion to Specification C923.NOTE 1: This specification covers the design, material, and performance of the resilient connection only. Connections covered by this specification are adequate for hydrostatic pressures up to 90 kPa (9.1 m) without leakage when tested in accordance with Section 7. Infiltration or exfiltration quantities for an installed system are dependent upon many factors other than the connections between manhole structures and pipe, and allowable quantities must be covered by other specifications and suitable testing of the installed pipeline and system.1.3 The following precautionary caveat pertains only to the test methods portion, Section 7, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific precaution statement, see 7.2.5.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Gloss3 is associated with the capacity of a surface to reflect more light in some directions than in others. The directions associated with mirror (or specular) reflection normally have the highest reflectances. Gloss is best seen and analyzed when the surfaces studied are illuminated by a light source that provides strong contrasting patterns of light and dark. Such a light source is described in this test method.5.2 The simplest concept of gloss is that it corresponds to the mirror-like reflectances of surfaces. However, the distributions and intensities of this surface-reflected light are (for real materials) highly variable and affected by a variety of factors: surface smoothness and contour, refractive index, absorptance, angle of incidence, and (to a generally small extent) wavelength. From the great variety of surface-reflection patterns met in materials of commerce, it has been possible to identify seven surface-reflection criteria or “types of gloss” regularly used by skilled technologists for intercomparing and rating their products for gloss. Six of the seven criteria, or “types of gloss,” are identified in the section on definitions. The seventh, luster or contrast gloss, is seldom of concern to the coatings industry.1.1 This test method covers the visual evaluation of gloss differences of coating surfaces, using special types of lamps for illumination. It identifies six aspects or types of gloss that one may look for when using the lamp to assess gloss differences between surfaces. It describes the conditions for using the lamps to best identify small differences in each of the six types of gloss. Four levels of visual gloss differences are distinguished.1.2 While this technique is useful for both weathered and unweathered specimens, it has not been applied to metallics.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The different combinations of SMD types, attachment medias, circuit substrates, plating options, and process variation can account for significant variation in test outcome.3.2 The SMD shear strength test is useful to manufacturers and users for determining the bond strength of the component to the membrane switch circuit.1.1 This test method covers the determination of the shear integrity of materials and procedures used to attach surface mount devices (SMD) to a membrane switch circuit.1.2 This test method is typically used to indicate the sufficient cure of conductive adhesive or underfill, or both. In general, this test method should be used prior to encapsulant. This test may also be used to demonstrate the Shear Force with encapsulation.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The viscous and elastic behavior of unvulcanized rubbers and rubber compounds is of paramount importance in rubber manufacturing, since it affects processing, such as mixing, calendering, extrusion, and molding. The uniformity of these properties is equally important, as fluctuations will cause upsets in manufacturing processes.5.2 A test capable of measuring viscosity and elasticity of unvulcanized rubbers and rubber compounds, including their uniformity and prediction of processing behavior, is therefore highly desirable (see Practice D6048 for further information).5.3 Compared to many other rheological tests, this test method measures viscosity and elasticity related parameters under conditions of low shear and has a high discriminating power. It can detect small rheological differences. A full discussion of the principles behind stress relaxation testing is given in Practice D6048.5.4 Test results of this test method may be useful in predicting processability, but correlation with actual manufacturing processes must be established in each individual case, since conditions vary too widely.5.5 This test method is suitable for specification compliance testing, quality control, referee purposes, and research and development work.1.1 This test method is an adaptation of the German Standard DIN 53514, a further development of the former “Defo Test” (see Appendix X1).1.2 This test method is capable of measuring and characterizing the rheological behavior (viscosity and elasticity) of unvulcanized raw rubbers and rubber compounds, relating to the macro structure of rubber polymers (average molecular weight, molecular weight distribution, long chain branching, and micro- and macro-gel).1.3 The viscosity and elasticity of unvulcanized rubbers and rubber compounds are determined by subjecting cylindrical test pieces to a compression/recovery cycle. The dependency on shear rate at constant shear stress is evaluated and the material fatigue behavior is determined in repeat cycle testing.1.4 The non-Newtonian viscous and elastic behavior of rubbers and rubber compounds can also be evaluated.1.5 Statistical evaluation of the test data provides an indication of data variation, which may be employed as an estimate of the homogeneity of the material tested.1.6 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method assesses the degree to which asphalts interact with one another. It can indicate possible future problems, especially blistering, in a roofing product if incompatible asphalts are in contact in the product.1.1 This test method provides a means for evaluating contact compatibility between asphaltic materials. It is generally used to determine compatibility between the saturant and coating used in the manufacture of prepared roofings.2 Coating and saturant will be referred to, but comparable asphaltic materials may be tested where this test procedure seems applicable.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This guide describes factors to be considered by an investigator designing a sampling program to compare the asbestos dust loadings in two environments and presents statistical methods for making the comparison. Each user is responsible for the design of an investigation and the interpretation of data collected when using dust data.5.2 This guide does not deal with situations where dusts of different compositions or from different surfaces are to be evaluated.5.3 This guide describes methods for interpreting the results of sampling and analysis performed in accordance with Test Methods D5755 and D6480. It may be appropriate to use the procedures in this guide with other dust collection and analysis methods, but it is the responsibility of the user to make this determination.5.4 The methods described in this guide are not intended to be used alone. They are intended to be used along with various evaluation methods that may include consideration of building use, activities within the building, air sampling, asbestos surveys (refer to Practice E2356), evaluation of building history and study of building ventilation systems.5.5 This guide describes methods for comparing environments and does not draw any conclusions relating asbestos surface loadings to the potential safety or habitability of buildings.5.6 This guide does not address risk assessments or the use of dust sampling in risk assessment. Health based risk assessments are beyond the scope of this guide.5.7 Warning—Asbestos fibers are acknowledged carcinogens. Breathing asbestos fibers can result in disease of the lungs including asbestosis, lung cancer, and mesothelioma. Precautions should be taken to avoid creating and breathing airborne asbestos particles when sampling and analyzing materials suspected of containing asbestos. Regulatory requirements addressing asbestos are defined by USEPA3,4 and OSHA.51.1 There are multiple purposes for determining the loading of asbestos in dust on surfaces. Each particular purpose may require unique sampling strategies, analytical methods, and procedures for data interpretation. Procedures are provided to facilitate application of available methods for determining asbestos surface loadings and/or asbestos loadings in surface dust for comparison between two environments. At present, this guide addresses one application of the ASTM surface dust methods. It is anticipated that additional areas will be added in the future. It is not intended that the discussion of one application should limit use of the methods in other areas.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 5.7.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method is useful to define the force needed to cause separation of the roofing or waterproofing system or components perpendicular to the plane of the system, and to define the weakest plane in the system.1.1 This test method measures the force needed to cause separation of the components of a roofing or a waterproofing membrane system normal (perpendicular) to the plane of the membrane. The separation may be adhesive at the weakest bond, or cohesive within the weakest material. If the failure is cohesive, the adhesive strength is greater than the cohesive strength.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 The standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Intended Use—Compliance with this guide will allow the sharing of electronic data between contracting parties that is normally done by hard copy. This can only be used when both parties use a database-derived software package to manage their contracts. Specifically, it will:3.1.1 Eliminate the duplication of manual entry of data into each party’s contract administration software package and3.1.2 Allow for wide access of the data to all authorized parties.1.1 This guide provides the database structure of electronic data interchange (EDI) information between ship owner and a shipyard for contract administration. Ship owners (hereinafter referred to as owners) and shipyards may each have unique software programs to manage their respective portions of a ship repair period. There is information that must be exchanged between the parties during the contract period. This guide has been developed to establish common field lengths, names, and types such that the exchanged information can be used directly by the respective software programs without scanning, typing, or redundant keying of information.1.2 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Wear and corrosion can involve a number of mechanical and chemical processes. The combined action of these processes can result in significant mutual interaction beyond the individual contributions of mechanical wear and corrosion (1-5).4 This interaction among abrasion, rubbing, impact and corrosion can significantly increase total material losses in aqueous environments, thus producing a synergistic effect. Reduction of either the corrosion or the wear component of material loss may significantly reduce the total material loss. A practical example may be a stainless steel that has excellent corrosion resistance in the absence of mechanical abrasion, but readily wears and corrodes when abrasive particles remove its corrosion-resistant passive film. Quantification of wear/corrosion synergism can help guide the user to the best means of lowering overall material loss. The procedures outlined in this guide cannot be used for systems in which any corrosion products such as oxides are left on the surface after a test, resulting in a possible weight gain.1.1 This guide covers and provides a means for computing the increased wear loss rate attributed to synergism or interaction that may occur in a system when both wear and corrosion processes coexist. The guide applies to systems in liquid solutions or slurries and does not include processes in a gas/solid system.1.2 This guide applies to metallic materials and can be used in a generic sense with a number of wear/corrosion tests. It is not restricted to use with approved ASTM test methods.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Accurate quantitative compositional information on hydrocarbon types can be useful in determining the effects of processes in the production of various finished fuels. Producers may require additional determinations such as n-paraffins, i-paraffins, naphthenes, and aromatics for process optimization. This information also may be useful for indicating the quality of fuels and for assessing the relative combustion properties of finished fuels. This test method can be used to make such determinations.1.1 This test method covers the quantitative determination of total n-paraffins, total i-paraffins, total naphthenes (cycloparaffins), total one ring (1R) and total two ring plus (2R+) aromatic hydrocarbons in hydrocarbon liquids having a boiling point between 36 °C and 343 °C by GCxGC (flow modulated comprehensive two-dimensional gas chromatography). The method has been applied to aviation turbine fuels and is applicable to other low olefinic fuels in the stated boiling point range.1.2 This test method has an interim precision. An expanded full interlaboratory study is to be completed in <5 years. The test method working concentration ranges in mass percent for which the interim precision has been determined are as follows:Hydrocarbon Type Lower limit(mass percent) Upper limit(mass percent)Total i-paraffins 22.0 24.3Total n-paraffins 19.0 21.9Total naphthenes (cycloparaffins) 34.3 36.7Total one ring aromatics 18.7 21.8Total two ring plus aromatics 0.5 1.91.3 This test method is applicable to other group type concentration ranges, to other hydrocarbon types such as selected individual components, for example, benzene, toluene, or n-paraffins by carbon number, or to other hydrocarbon streams; however, precision has not been determined at this time. A future ILS will include a variety of sample types and extend the reporting.1.4 This test method is not intended to determine unsaturated hydrocarbons, such as olefins, content which may interfere with the cycloparaffins; this test method is applicable to samples with < 1% by mass total olefins as determined by D1319.1.5 This test method is not intended to determine FAME (fatty acid methyl esters). For such applications, Test Method D7797, IP 585, or equivalent test methods are available.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard test method does not mandate or describe a specific software package for data processing and display. Any commercially available GCxGC software used for data processing and display shall meet the requirements for the calculation of the results. Appendix X1 provides some guidelines.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

Preservatives of the metallic series and oil soluble preservatives are not readily apparent in a cross section of wood either due to similar color to the species of wood or lack of color of the preservative itself. Chemical staining of a treated specimen of wood reveals the presence of the preservative. The sapwood and heartwood of Douglas-Fir and the pine species can be differentiated by a chemical stain.1.1 These test methods cover procedures for determining penetration of preservatives in wood in cases where demarcation between the treated and untreated wood is not readily visible. Included are test methods for differentiating the heartwood and the sapwood of wood samples for specific species, and a test method for differentiating the heartwoods between the red oaks and the white oaks. 1.2 The procedures appear in the following order: Procedure Sections Penetration of Arsenic-Containing Preservatives 6 to 8 Penetration of Copper-Containing Preservatives 9 to 11 Penetration of Fluoride-Containing Preservatives 12 to 15 Penetration of Pentachlorophenol Using 4,4[prime]-bis-Dimethylamino-Triphenylmethane (DMTM) 16 to 20 Penetration of Pentachlorophenol Using a Silver-Copper Complex Known as "Penta-Check" 21 to 24 Penetration of Solvent Used With Oil-Soluble Preservatives 25 to 28 Penetration of Zinc-Containing Preservatives 29 to 32 Differentiating between Sapwood and Heartwood in Pine Species (Pinus sp.) 33 to 36 Differentiating between Sapwood and Heartwood in Douglas Fir (Pseudotsuga menziesii) 37 to 40 Differentiating between Sapwood and Heartwood in White Fir (Abies concolor) 41 to 44 Differentiating Between Woods of the Red Oak and the White Oak Species 45 to 48 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method is well suited for measuring the viscosity of glasses in ranges higher than those covered by parallel plate (see Test Method C1351M) and rotational viscometry (see Practice C965) methods. This test method is useful for providing information related to the behavior of glass after it has been formed into an object of commerce and in research and development.1.1 This test method covers the determination of glass viscosity from approximately 108 Pa·s to approximately 1013 Pa·s by measuring the rate of viscous bending of a simply loaded glass beam.2 Due to the thermal history of the glass, the viscosity may not represent conditions of thermal equilibrium at the high end of the measured viscosity range. Measurements carried out over extended periods of time at any temperature or thermal preconditioning will minimize these effects by allowing the glass to approach equilibrium structural conditions. Conversely, the method also may be used in experimental programs that focus on nonequilibrium conditions.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method is well suited for measuring the viscosity of glasses between the range within which rotational viscometry (see Practice C965) is useful and the range within which beam bending viscometry is useful (see Test Method C1350M). It can be used to determine the viscosity/temperature curve in the region near the softening point (see Test Method C338). This test method is useful for providing information related to the behavior of glass as it is formed into an object of commerce, and in research and development.1.1 This test method covers the determination of the viscosity of glass from 104 Pa·s to 108 Pa·s by measuring the rate of viscous compression of a small, solid cylinder.21.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the design, material, and minimum performance requirements of resilient connectors used for connections between reinforced concrete manhole structures and corrugated high density polyethylene drainage pipes. These connectors are designed to provide a positive seal between the pipe and manholes or other structures subjected to internal and external hydrostatic pressures. The design of the connector shall be such that positive seal is accomplished at two locations: (1) between the connector and the wall of the manhole or structure and (2) between the connector and the pipe. The connectors shall be tested for hydrostatic pressure test to meet the requirements prescribed.1.1 This specification covers the design, material, and minimum performance requirements of resilient connectors used for connections between reinforced concrete structures conforming to Specifications C478/C478M and C913 to annular corrugated profile wall high density polyethylene (HDPE) and polypropylene (PP) drainage and sewer pipe conforming to Specifications F2306/F2306M, F2648/F2648M, F2763/F2763M, F2764/F2764M, F2881/F2881M and F2947/F2947M.1.1.1 These connectors are designed to provide a positive seal between the pipe and manholes or other structures subjected to internal and external hydrostatic pressures less than 10.8 psi [74 KPa].1.1.2 Testing under this standard is limited to hydrostatic pressures. Alternate air and vacuum pressure testing involve unique testing protocols and are not addressed under this standard.1.1.3 Testing under this standard is conducted in a laboratory as a proof of design certification. Actual field performance testing would be accomplished and accepted under individual project performance standards or pipeline acceptance criteria, which is outside the scope of this standard.NOTE 1: Infiltration or exfiltration quantities for an installed system are dependent upon many factors other than the connections between manhole structures and pipe, and allowable quantities must be covered by other specifications and suitable testing of the installed pipeline and system.NOTE 2: This specification may be applied to other types of plastic drainage pipe. Consult with manufacturer of pipe for applicability to this standard.1.2 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text the SI units are shown in brackets. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 The following precautionary caveat pertains only to the test methods portion, Section 7. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific precaution statement, see 7.2.3.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
58 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页