微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide may be used as a reference of acceptable open-cut construction practices for the proper installation of buried fiberglass and thermoplastic pipe. This guide may be used as follows:4.1.1 Installation contractors have an awareness of the level of workmanship required and use this information for bidding purposes and during construction.4.1.2 Construction inspectors have a reference of acceptable installation practices.4.1.3 Specification writers may use this guide as a reference in contract documents.4.1.4 Designers may review this information during planning and design for factors to consider in the preparation of plans and specifications.4.1.5 The owner of the pipeline may use this guide as a reference for restoration of proper pipe support and embedment when original construction is disturbed due to repairs, modifications, or construction of adjacent or crossing pipelines or cables.4.2 This guide should not be used to replace project specification requirements, manufacturer's recommendations, plumbing codes, building codes, or ASTM installation standards, but may be used to supplement that information.1.1 This guide describes installation techniques and considerations for open-cut construction of buried pipe. Although this guide was developed for plastic pipe, the concepts of providing the appropriate soil support, care in handling, correct joining techniques, proper soil compaction methods, and prevention of installation damage may apply to any pipe.1.1.1 Plastic pipe refers to thermoplastic and fiberglass pipe.1.1.2 Thermoplastic pipe refers to pipe fabricated from polyvinyl chloride (PVC), polyethylene (PE), acrylonitrile-butadiene styrene (ABS), cross-linked polyethylene (PEX), chlorinated polyvinyl chloride (CPVC), or polypropylene (PP). A list of specifications for these products is given in Appendix X2.1.1.3 Fiberglass pipe refers to a glass-fiber-reinforced thermosetting-resin pipe. A list of ASTM specifications for these products is given in Appendix X2.NOTE 1: Appendix X2 cannot be considered inclusive because there may be unlisted, recently adopted ASTM specifications for new products that may be installed using this guide.NOTE 2: Only a few of the ASTM specifications listed in Appendix X2 include the associated fittings. While this guide applies to the installation of pipe, couplings, and fittings, no attempt was made to list all the possible fitting specifications that may be used in conjunction with the pipe specifications. Consult each specification or manufacturer for appropriate fitting standards.1.1.4 For simplification, the term pipe will be used in this document to mean pipe sections, fittings, and couplings.1.2 This guide contains general construction information applicable for plastic pipe and supplements the installation standards for the various types of pipe as described in Practices D2321, D2774, D3839, F690, and Guide F645.NOTE 3: This guide is not applicable for gas pipe applications as additional requirements may apply.1.3 Flexible pipe, such as thermoplastic and fiberglass, are typically designed to rely on the stiffness of the soil surrounding the pipe for support. The contract documents should describe the requirements of an appropriate soil support system. The construction practices described in this guide can be instrumental in attaining the required soil stiffness.1.3.1 A discussion of the interaction between a buried pipe and the surrounding soil and the importance of attaining proper soil support is in Appendix X1.1.3.2 Following these guidelines will be helpful in preventing local deformations in the pipe.1.4 This guide does not cover underwater installation, pipe that needs to be supported on piling, perforated pipe used for drainage, or gas pipelines.1.5 Pipelines through areas described as “expansive soils,” “collapsing soils,” landfills or water-logged land (such as swamps) should be constructed using site-specific installation procedures and are not discussed in this guide.1.6 This guide is not intended to cover all situations. Specific pipe characteristics, fluid transported, local site conditions, environmental concerns, or manufacturer's recommendations may require different guidelines.1.7 The construction practices presented in this guide may be affected by the installation requirements of owners, specifying organizations, or regulatory agencies for pipelines crossing roads and highways, other pipelines or cables, or waterways such as streams, drainage channels, or floodways.1.8 Culverts or pipe that are used as passages through water retaining embankments (for example, earth dams) may be constructed using the principles of this guide, if appropriate provisions are made to prevent water movement along the outside of the pipe (using impervious soils, cutoff collars, head walls, etc.).1.9 The values stated in SI units are to be regarded as the standard. The inch-pound units in parentheses are given for information only.NOTE 4: There is no similar or equivalent ISO standard covering the primary subject matter of this guide.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This practice covers the design of buried precast concrete low head pressure pipe having a circular shape and manufactured in accordance with Specification C361/C361M subject to internal pressure not exceeding a pressure head of 125 ft (54 psi), or as otherwise limited herein.1.2 When buried, concrete pipe is part of a composite system comprised of the pipe and the surrounding soil envelope. Both the pipe and soil envelope contribute to the strength and structural behavior of the system.1.3 This practice presents the method for evaluating the effects of external loads combined with internal pressure on buried precast concrete low-head pressure pipe manufactured per Specification C361/C361M. This method includes an analysis that accounts for the interaction between the pipe and soil envelope in determining external loads, earth pressure distributions, and the moments, thrusts, and shears for the pipe. It also includes a detailed procedure for designing reinforcement for these installations.1.4 Construction requirements for precast concrete low-head pressure pipe are in accordance with Specification C361/C361M.1.5 This practice may be used as a reference by the owner and the owner's engineer in preparing project specifications for low head pressure pipe.1.6 The design procedures given in this standard are intended for use by engineers who are familiar with the installation and pipe characteristics that affect the structural behavior of buried concrete pipe installations and the significance of the installation requirements.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 LCC analysis is an economic method for evaluating alternatives that are characterized by differing cash flows over the designated project design life. The method entails calculating the LCC of each alternate capable of satisfying the functional requirement of the project and comparing them to determine which has (have) the lowest estimated LCC over the project design life.5.2 The LCC method is particularly suitable for determining whether the higher initial cost of an alternative is economically justified by reductions in future costs (for example, operating maintenance, rehabilitation, or replacement) when compared to an alternative with lower initial costs but higher future costs. If a design alternative has both a lower initial cost and lower future costs than other alternatives, an LCC analysis is not necessary to show that the former is the economically preferable choice.1.1 This practice covers a procedure for using life-cycle cost (LCC) analysis techniques to evaluate alternative drainage system designs using corrugated metal pipe that satisfies the same functional requirements.1.2 The LCC technique measures the present value of all relevant costs of installing, operating, and maintaining alternative drainage systems, such as engineering, construction, maintenance, rehabilitation, or replacement, over a specified period of time. The practice also accommodates any remaining residual or salvage value.1.3 Using the results of the LCC analysis, the decision maker can then identify the alternative(s) with the lowest estimated total cost based on the present value of all costs.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 LCC analysis is an economic method to evaluate alternatives that are characterized by differing cash flows over the designated project design life. The method entails calculating the LCC of each alternative capable of satisfying the functional requirements of the project and comparing them to determine which have the lowest estimated LCC over the project design life.5.2 The LCC method is particularly suitable for determining whether the higher initial cost of an alternative is economically justified by reductions in future costs (for example, operating maintenance, rehabilitation, or replacement) when compared to an alternative with lower initial costs but higher future costs. If a design alternative has both a lower initial cost and lower future costs than other alternatives, an LCC analysis is not necessary to show the former is the economically preferable choice.1.1 This practice establishes a procedure for using life cycle cost (LCC) analysis techniques to evaluate alternative drainage system designs, using plastic pipe that satisfy the same functional requirements.1.2 The LCC technique measures the present value of all relevant costs to install, operate, and maintain alternative drainage systems such as engineering, construction, maintenance, rehabilitation, or replacement over a specified period of time. The practice also accommodates any remaining residual or salvage value.1.3 The decision maker, using the results of the LCC analysis, can then identify the alternative(s) with the lowest estimated total cost based on the present value of all costs.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is for use by engineers, regulatory agencies, owners, and inspection organizations who are involved in the removal and replacement of AC pipes through the use of a method that is in compliance with the rules for removing and replacing AC pipe in accordance with NESHAP and OSHA requirements governing the handling, removal, and disposal of any ACM.1.1 This practice covers the requirements and test methods of an EPA-approved alternative work practice (AWP) for the replacing of an Asbestos Cement (AC) pipe by the Close Tolerance Pipe Slurrification Method in accordance with said EPA CTPS AWP issued on June 10, 2019. This process utilizes a patented method (US 10,557,587 B2)2 and other specially designed tools designed to work with the EPA regulations surrounding AC pipe work. Specifically, the special (patented) back reaming tool (US 8,365,841 B2)2 delivers the required bentonite-based fluid to maintain a wet cutting environment which is an important requirement for cutting Asbestos Cement Material (ACM). The sizing of the cutting head is set at 0.25 in. in diameter greater than the replacement pipe's outside diameter to facilitate the removal of the ACM. This close tolerance sizing creates a scenario where the new pipe, along with the injection of the drill fluid, will allow the slurry to flow and subsequently expel at pre-determined pit locations. The slurry containing the ACM is then removed from the site and properly disposed of. Any remaining trace amounts of asbestos fiber in the ground are encapsulated in a skim coat of the slurry remaining around the new pipe, the skim coat having the consistency of a lightweight concrete material commonly known as excavatable flowable fill.1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
22 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页