微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers requirements for fuel grade ethyl tertiary-butyl ether (ETBE) that may be used for blending with fuels for aviation spark-ignition engines where permissible. The requirements for ETBE that may be used for blending with fuels for aviation spark-ignition engines are given. The ETBE shall be visually free of undissolved water, sediment, and suspended matter that could render the material unacceptable for the intended application.1.1 This specification covers requirements for fuel grade ethyl tertiary-butyl ether (ETBE) that may be used for blending with fuels for aviation spark-ignition engines where permissible. Other ETBE grades available in the marketplace that do not comply with the requirements of this specification, are not suitable for blending with aviation fuels.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 These procedures are used by producers and users of RDF for determining the total sulfur content of the fuel.1.1 These test methods present two alternative procedures for the determination of total sulfur in prepared analysis samples of solid refuse-derived fuel (RDF). Sulfur is included in the ultimate analysis of RDF.1.2 The test methods appear in the following order:Test SectionsEschka Method 8 – 11Bomb Washing Method 12 and 131.3 These test methods may be applicable to any waste material from which a laboratory analysis sample can be prepared.1.4 The values stated in SI units are to be regarded as standard. Inch-pound units are provided for information.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements see Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Calibration is a fundamental part of making measurements and its effect on the quality of measurement data is significant. Thus, sufficient attention must be given to calibration when it is established for a measurement method so that the data produced will be acceptable. The use of an inappropriate calibration standard, inadequate instructions for calibration, and poor documentation of the calibration process are examples of circumstances that can adversely affect the validity of a calibration. Thus, the calibration process must conform to criteria established to ensure the validity of calibration results and any associated measurement data. Such criteria are given in Guide C1009, in which calibration is identified as a component of laboratory quality assurance (see Fig. 1). This guide expands upon those criteria to provide more comprehensive guidance for establishing calibration.FIG. 1 Quality Assurance of Analytical Laboratory Data4.2 The manner of calibration and other technical requirements for calibrating a measurement method are usually established when a method is first introduced into a laboratory, which may be through validation and qualification as defined by Guide C1068 (see Fig. 1). However, calibration involves more than the technical aspects of the calibration process. The other dimension of the process is the operational requirements that are necessary to ensure that calibration results are valid and that they are documented and verifiable should their integrity be questioned. The provisions of this guide provide those operational requirements and should be considered whenever calibration is planned and established.1.1 This guide provides the basis for establishing calibration for a measurement method typically used in an analytical chemistry laboratory analyzing nuclear materials. Guidance is included for such activities as preparing a calibration procedure, selecting a calibration standard, controlling calibrated equipment, and documenting calibration. The guide is generic and any required technical information specific for a given method must be obtained from other sources.1.2 The guidance information is provided in the following sections:  SectionGeneral Considerations 5Calibration Procedure 6Calibration Standard 7Control of Calibrated Equipment 8Documentation 9Keywords 101.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers one type of thermoplastic, hot-applied, jet-fuel-resistant joint sealant for use in sealing joints and cracks in pavements.1.2 Units—The values stated in SI units are to be regarded as standard. The values in parentheses are for information only. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance to the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution statements are given in the Appendix.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The standard is available to producers and users of RDF for determining the content and forms of chlorine present in refuse-derived fuel.1.1 This test method covers the determination of the forms of chlorine in refuse-derived fuel-three (RDF): total chlorine, water-soluble chloride, and water-insoluble chlorine.1.2 This test method may be applicable to any waste material from which a laboratory analysis sample can be prepared.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precaution statements, see Section 6 and 11.2.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This standard is intended to provide a method for determining the weight percent of carbon and hydrogen in an RDF analysis sample.5.2 Carbon and hydrogen are components of RDF and, when determined, can be used for calculating RDF combustion characteristics.1.1 This test method is for the determination of total carbon and hydrogen in a sample of refuse-derived fuel (RDF). Both carbon and hydrogen are determined in one analysis. This test method yields the total percentages of carbon and hydrogen in RDF as analyzed and the results include not only carbon and hydrogen in the organic matter, but also the carbon present in mineral carbonates and the hydrogen present in the free moisture accompanying the analysis sample as well as hydrogen present as water of hydration.NOTE 1: It is recognized that certain technical applications of the data derived from this test procedure may justify additional corrections. These corrections could involve compensation for the carbon present as carbonates, the hydrogen of free moisture accompanying the analysis sample, and the calculated hydrogen present as water of hydration.1.2 This test method may be applicable to any waste material from which a laboratory analysis sample can be prepared.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Excessive levels of hydrogen sulfide in the vapor phase above residual fuel oils in storage tanks can result in health hazards, violation of local occupational health and safety regulations, and public complaint. An additional concern is corrosion that can be caused by the presence of H2S during refining or other activities. Control measures to maintain safe levels of H2S require a precise method for the measurement of potentially hazardous levels of H2S in fuel oils. (Warning—Safety. Hydrogen sulfide (H2S) is a very dangerous, toxic, explosive and flammable, colorless and transparent gas which can be found in crude oil and can be formed during the manufacture of the fuel at the refinery and can be released during handling, storage, and distribution. At very low concentrations, the gas has the characteristic smell of rotten eggs. However, at higher concentrations, it causes a loss of smell, headaches, and dizziness, and at very high concentrations, it causes instantaneous death. It is strongly recommended that personnel involved in the testing for hydrogen sulfide are aware of the hazards of vapor-phase H2S and have in place appropriate processes and procedures to manage the risk of exposure.)5.2 This test method was developed so refiners, fuel terminal operators, and independent testing laboratory personnel can rapidly and precisely measure the amount of H2S in residual fuel oils and distillate blend stocks, with a minimum of training, in a wide range of locations.5.3 Test Method D5705 provides a simple and consistent field test method for the rapid determination of H2S in the residual fuel oils vapor phase. However it does not necessarily simulate the vapor phase H2S concentration of a fuel storage tank nor does it provide any indication of the liquid phase H2S concentration.5.4 Test Method D6021 does measure the H2S concentration of H2S in the liquid phase, however it requires a laboratory and a skilled operator to perform the complex procedure and calculations, and does not offer any reproducibility data. This test method (D7621) offers a 15 min automated test, simplicity, full precision, and a degree of portability.5.5 H2S concentrations in the liquid and vapor phase attempt to reach equilibrium in a static system. However, this equilibrium and the related liquid and vapor concentrations can vary greatly depending on temperature and the chemical composition of the liquid phase. The equilibrium of the vapor phase is disrupted the moment a vent or access point is opened to collect a sample.1.1 This test method covers procedures (A and B) for the determination of the hydrogen sulfide (H2S) content of fuel oils such as marine residual fuels and blend stocks, with viscosity up to 3000 mm2s-1 at 50 °C, and marine distillate fuels, as measured in the liquid phase.NOTE 1: Specification fuels falling within the scope of this test method are: ASTM Specification D396, MIL-DTL-16884, and ISO 8217.1.2 Procedure A has been shown to eliminate interferences such as thiols (mercaptans) and alkyl sulfides. Procedure B can give elevated results if such interferences are present (see Annex A2).NOTE 2: A procedure for measuring the amount of hydrogen sulfide in crude oil can be found in Appendix X1. Full precision for Appendix X1 has not yet been determined.1.3 Valid ranges for the precision are given in Table 2 and Table 3. Measurements can be made outside these ranges however precision has not been determined.1.4 Samples containing FAME do not affect the measurement of hydrogen sulfide by this test method.1.5 The values stated in SI units are to be regarded as standard. Non-SI units given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Low operating temperature fuel cells such as PEMFCs require high purity hydrogen for optimal performance and longevity. Organic halides and formaldehyde can react with catalyst in PEMs and non-methane hydrocarbons degrade PEM stack performance.1.1 The gas chromatography/mass spectrometry (GC/MS) procedure described in this test method is used to determine concentrations of total organic halides and total non-methane hydrocarbons (TNMHC) in hydrogen by measurement of individual target halocarbons (Table 1) and hydrocarbons (including formaldehyde, Table 1 and Table 2), respectively.1.2 Mention of trade names in this test method does not constitute endorsement or recommendation for use. Other manufacturers’ equipment or equipment models can be used.1.3 Units—The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The standard sample is available to producers and users of RDF as a method for determining the weight percent of nitrogen in the analysis samples.5.2 Nitrogen is part of the ultimate analysis and can be used for calculation of combustion parameters.1.1 These test methods cover the determination of total Kjeldahl nitrogen in prepared analysis samples of solid forms of refuse-derived fuel (RDF). The procedures measure free ammonia or ammonia formed from the conversion of organic nitrogenous compounds such as amino acids and proteins. However, the procedures may not convert the nitrogenous compounds of some wastes to ammonia. Examples of such compounds that may not be measured are nitro compounds, hydrozones, oxines, nitrates, semicarbazones, pyridines, and some refractory tertiary amines.1.2 Two alternatives are described for the final determination of the ammonia, the Kjeldahl-Gunning Test Method and the Acid-Titration Test Method.1.3 The analytical data from these test methods are to be reported as part of the ultimate analysis where ultimate analysis is requested.1.4 These test methods may be applicable to any waste material from which a laboratory analysis sample can be prepared.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 8.4.1 and Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

16.1 For the purpose of determining compliance with the specified limits of property requirements, an observed value or a calculated value shall be rounded in accordance with the rounding method of Practice E29.Test Rounded Units for Observedor Calculated Value Chemical composition, tolerance (when expressed in decimals) nearest unit in the last right hand place   of figures of the specified limitTensile strength and yield strength nearest 1000 psi (10 MPa)Elongation nearest 1 %AbstractThis specification covers the standard requirements for wrought zirconium and zirconium alloy seamless and welded tubes for nuclear applications except for nuclear fuel cladding. Five grades of reactor grade zirconium and zirconium alloys with R60001, R60802, R60804, R60901, and R60904 UNS number designations are described. Material shall be made from ingots produced by vacuum arc melting, electron beam melting, or other melting process to be carried out in furnaces conventionally used for reactive metals. Seamless tubes may be made by billet extrusion with subsequent cold working, by drawing, swaging, or rocking, with intermediate annealing. Welded tubing shall be made from flat-rolled products by an automatic or semiautomatic welding process with no addition of filler metal and shall be cold reduced by drawing, swaging, or rocking. The products shall be in the recrystallized or cold-worked and stress-relieved conditions and shall be furnished by as-cold reducing, pickling, grounding, polishing, or end-saw cutting, machining, or shearing. Chemical and product analysis shall be performed on the materials which shall meet the chemical composition requirements for tin, iron, chromium, nickel, niobium, oxygen, and other impurity elements. The tensile properties shall be determined by a tensile test method and shall conform to the tensile strength, yield strength, and elongation limits. Steam and water corrosion tests and hydrostatic test shall be conducted to determine the acceptance criteria for corrosion and internal hydrostatic pressure, respectively. Burst properties, contractile strain ratio, grain size, and hydride orientation of the finished tubing shall also be determined.1.1 This specification covers seamless and welded wrought zirconium and zirconium-alloy tubes for nuclear application. Nuclear fuel cladding is covered in Specification B811.1.2 Five grades of reactor grade zirconium and zirconium alloys suitable for nuclear application are described.1.2.1 The present UNS numbers designated for the five grades are given in Table 1.1.3 Unless a single unit is used, for example corrosion mass gain in mg/dm2, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.4 The following precautionary caveat pertains only to the test method portions of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 In 2014, the U.S. EPA published the final rules adding renewable fuel pathways under the RFS Program. The rules qualified kernel fiber as a cellulosic feedstock meeting the 60 % greenhouse gas (GHG) reduction and qualifies for the generation of D3 RINs. These rules allow for two approaches for kernel fiber conversion (CFR 40, Part 80 and EPA-HQ-OAR-2012-0401; FRL-9910-40-OAR):4.1.1 Producers of cellulosic fuels derived from conversion of feedstocks that are predominantly cellulosic, where “predominantly cellulosic” is defined as feedstock that has an average adjusted cellulosic content of 75 %, measured on a dry mass basis; furthermore, this ‘‘adjusted cellulosic content’’ is the percent of organic (non-ash) material that is cellulose, hemicellulose, or lignin (CFR 40, Part 80 and EPA-HQ-OAR-2012-0401; FRL-9910-40-OAR).4.1.2 Producers of cellulosic fuels derived from the simultaneous conversion of feedstocks that are predominantly cellulosic and feedstocks that are not predominantly cellulosic (CFR 40, Part 80 and EPA-HQ-OAR-2012-0401; FRL-9910-40-OAR).4.2 Producers that wish to gain approval to the pathway that claims simultaneous conversion of feedstocks that are predominantly cellulosic and feedstocks that are not predominantly cellulosic are required to quantify the amount of renewable fuel that is derived specifically from cellulosic content and from starch. To accomplish this, the producer needs to quantify the amount of cellulosic content and starch present before the conversion process begins and after the conversion process is complete. These measurements of cellulosic content and starch content before and after conversion are used to calculate a converted fraction of each, which is then used to ratio the renewable fuel produced accordingly and assign those respective gallons the D6 or D3 RIN code (CFR 40, Part 80 and EPA-HQ-OAR-2012-0401; FRL-9910-40-OAR).1.1 This practice provides criteria for the sampling, testing, and calculation methodologies used for the quantification of the converted fraction of starch and cellulosic content. Furthermore, this practice covers procedures for the management of the standard error associated with the sampling and testing of before conversion and after conversion samples from a fuel ethanol production facility.1.1.1 This practice can be used to determine the volume of renewable fuel produced from the simultaneous conversion of starch and cellulosic material eligible for generating D3 RINs under the United States (U.S.) Renewable Fuel Standard (RFS).1.2 This practice covers the collection and testing of heterogeneous material, including, but not limited to: corn, sorghum, wheat, mash, beer, whole stillage, dried distillers grains with solubles (DDGS), and dried distillers grains.1.3 This practice is intended to be used in renewable fuel production facilities designed to produce renewable alcohols. Use of this practice in any other type of process has not been reviewed.1.4 This practice can be utilized using either manual or automatic sampling techniques, so long as the criteria of this practice are followed.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the methanol fuel blend, M70-M85, for use in ground vehicles that run on automotive spark-ignition engines. Fuels are grouped into three vapor pressure classes (Classes 1, 2, and 3) on the basis of seasonal and geographical volatility. The fuel blends shall undergo chemical analysis for methanol, higher alcohols, hydrocarbon/aliphatic ether, acidity as acetic acid, solvent washed and unwashed gum content, total chlorine as chloride, lead, phosphorus, water, sulfur, and inorganic chloride. The product's appearance shall be clear and bright, visibly free of suspended or precipitated contaminants.1.1 This specification covers the requirements for automotive fuel blends of methanol and gasoline for use in ground vehicles equipped with methanol-capable flexible-fuel, and dedicated methanol spark-ignition engines. Fuel produced to this specification contains 51 % to 85 % by volume methanol. This fuel is sometimes referred to at retail as “M85.” Appendix X1 discusses the significance of the properties specified. Appendix X2 presents the current status in the development of a luminosity test procedure (flame visibility) for methanol fuel blends (M51–M85).1.2 The vapor pressure of methanol fuel blends is varied for seasonal climatic changes. Vapor pressure is increased at lower temperatures to ensure adequate vehicle operability and safety. Methanol content and selection of gasoline blendstocks are adjusted by the blender to meet these vapor pressure requirements.1.3 The United States government has established various programs for alternative fuels. Many of the definitions of alternative fuel used by these programs can be more or less restrictive than the requirements of this specification. See Annex A1 for additional information on alternative fuels containing methanol.1.4 The values stated in SI units are to be regarded as the standard.1.4.1 Exception—Non-SI units are provided for information only. In most cases, U.S. federal regulations specify non-SI units.1.5 The following precautionary caveat pertains only to the test method portions–Appendix X2 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers a fuel blend, nominally 51 to 83 volume % ethanol for use in ground vehicles equipped with ethanol fuel blend flexible-fuel spark-ignition engines. Ethanol fuel blends, also referred to as “Ethanol Flex Fuel” shall conform to the performance requirements prescribed. Ethanol fuel blends shall be visually free of sediment and suspended matter. The vapour pressure, acidity, pHe requirements, gum content, inorganic chloride, water requirements, copper requirements, and sulphur requirements shall be tested to meet the requirements prescribed.1.1 This specification covers the requirements for automotive fuel blends of ethanol and gasoline for use in ground vehicles equipped with ethanol fuel blend flexible-fuel spark-ignition engines. Fuel produced to this specification contains 51 % to 83 % by volume ethanol. This fuel is for use in flexible-fuel vehicles and is sometimes referred to at retail as “Ethanol Flex-Fuel.” Appendix X1 discusses the significance of the properties specified.1.2 The vapor pressure of ethanol fuel blends is varied for seasonal climatic changes. Vapor pressure is increased at lower temperatures to ensure adequate flexible-fuel vehicle operability. Ethanol content and selection of hydrocarbon blendstock are adjusted by the blender to meet these vapor pressure requirements.1.3 This specification formerly covered Fuel Ethanol (Ed70-Ed85) for Automotive Spark-Ignition Engines, also known commercially as E85. The nomenclature “fuel ethanol” has been changed to “ethanol fuel blends” to distinguish this product from denatured fuel ethanol Specification D4806. To facilitate blending of ethanol fuel blends that meet seasonal vapor pressure requirements, a new lower minimum ethanol content has been established.1.4 The United States government has established various programs for alternative fuels. Many of the definitions of alternative fuel used by these programs may be more restrictive than the requirements of this specification. See 4.1.2.1 for additional information on alternative fuels containing ethanol.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 The following safety hazard caveat pertains only to the test method portion, 8.1.8, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The determination of total moisture is important for assessing the fuel quality. Water content will affect the heating value of fuels directly and can contribute to instability in the operation of an industrial furnace or adversely impact performance in other applications. Additionally, high water content can present material handling and storage problems during winter months or in cold environments.1.1 This test method covers the determination by Karl Fischer (KF) titrimetry of total moisture in solid or liquid hazardous waste fuels used by industrial furnaces.1.2 This test method has been used successfully on numerous samples of hazardous waste fuel composed of solvents, spent oils, inks, paints, and pigments. The range of applicability for this test method is between 1.0 and 100 %; however, this evaluation was limited to samples containing approximately 5 to 50 % water.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Automatic determination of stability parameters using a light back-scattering technique improves accuracy and removes human errors. In manual testing, operators have to visually compare oil stains on pieces of filter paper to determine if asphaltenes have been precipitated.5.2 Refinery thermal and hydrocracking processes can be run closer to their severity limits if stability parameters can be calculated more accurately. This gives increased yield and profitability.5.3 Results from the test method could be used to set a standard specification for stability parameters for fuel oils.5.4 The compatibility parameters of crude oils can be used in crude oil blending in refineries to determine, in advance, which crude oil blends will be compatible and thus can be used to minimize plugging problems, unit shut downs, and maintenance costs. Determination of crude oil compatibility parameters also enables refineries to select crude oil mixtures more economically.5.5 This test method can measure stability and compatibility parameters, and determine stability reserve on different blends for particular applications to optimize the blending, storage, and use of heavy fuel oilsNOTE 1: Users of this test method would normally use stability and compatibility parameters to determine stability reserve of residual products, fuel blends and crude oils. However, the interpretation of stability, stability reserve and compatibility is heavily ‘use dependent,’ and is beyond the scope of this test method.1.1 This test method covers an automated procedure involving titration and optical detection of precipitated asphaltenes for determining the stability and compatibility parameters of refinery residual streams, residual fuel oils, and crude oils. Stability in this context is the ability to maintain asphaltenes in a peptized or dissolved state and not undergo flocculation or precipitation. Similarly, compatibility relates to the property of mixing two or more oils without precipitation or flocculation of asphaltenes.1.2 This test method is applicable to residual products from atmospheric and vacuum distillation, from thermal, catalytic, and hydrocracking processes, to products typical of Specifications D396, Grades No. 5L, 5H, and 6, and D2880, Grades No. 3-GT and 4-GT, and to crude oils, providing these products contain 0.05 mass % or greater concentration of asphaltenes.1.3 This test method is not relevant to oils that contain less than 0.05 % asphaltenes, and would be pointless to apply to unstable oils that already contain flocculated asphaltenes.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
199 条记录,每页 15 条,当前第 1 / 14 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页