微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This standard is intended to provide a method for determining the weight percent of carbon and hydrogen in an RDF analysis sample.5.2 Carbon and hydrogen are components of RDF and, when determined, can be used for calculating RDF combustion characteristics.1.1 This test method is for the determination of total carbon and hydrogen in a sample of refuse-derived fuel (RDF). Both carbon and hydrogen are determined in one analysis. This test method yields the total percentages of carbon and hydrogen in RDF as analyzed and the results include not only carbon and hydrogen in the organic matter, but also the carbon present in mineral carbonates and the hydrogen present in the free moisture accompanying the analysis sample as well as hydrogen present as water of hydration.NOTE 1: It is recognized that certain technical applications of the data derived from this test procedure may justify additional corrections. These corrections could involve compensation for the carbon present as carbonates, the hydrogen of free moisture accompanying the analysis sample, and the calculated hydrogen present as water of hydration.1.2 This test method may be applicable to any waste material from which a laboratory analysis sample can be prepared.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Excessive levels of hydrogen sulfide in the vapor phase above residual fuel oils in storage tanks can result in health hazards, violation of local occupational health and safety regulations, and public complaint. An additional concern is corrosion that can be caused by the presence of H2S during refining or other activities. Control measures to maintain safe levels of H2S require a precise method for the measurement of potentially hazardous levels of H2S in fuel oils. (Warning—Safety. Hydrogen sulfide (H2S) is a very dangerous, toxic, explosive and flammable, colorless and transparent gas which can be found in crude oil and can be formed during the manufacture of the fuel at the refinery and can be released during handling, storage, and distribution. At very low concentrations, the gas has the characteristic smell of rotten eggs. However, at higher concentrations, it causes a loss of smell, headaches, and dizziness, and at very high concentrations, it causes instantaneous death. It is strongly recommended that personnel involved in the testing for hydrogen sulfide are aware of the hazards of vapor-phase H2S and have in place appropriate processes and procedures to manage the risk of exposure.)5.2 This test method was developed so refiners, fuel terminal operators, and independent testing laboratory personnel can rapidly and precisely measure the amount of H2S in residual fuel oils and distillate blend stocks, with a minimum of training, in a wide range of locations.5.3 Test Method D5705 provides a simple and consistent field test method for the rapid determination of H2S in the residual fuel oils vapor phase. However it does not necessarily simulate the vapor phase H2S concentration of a fuel storage tank nor does it provide any indication of the liquid phase H2S concentration.5.4 Test Method D6021 does measure the H2S concentration of H2S in the liquid phase, however it requires a laboratory and a skilled operator to perform the complex procedure and calculations, and does not offer any reproducibility data. This test method (D7621) offers a 15 min automated test, simplicity, full precision, and a degree of portability.5.5 H2S concentrations in the liquid and vapor phase attempt to reach equilibrium in a static system. However, this equilibrium and the related liquid and vapor concentrations can vary greatly depending on temperature and the chemical composition of the liquid phase. The equilibrium of the vapor phase is disrupted the moment a vent or access point is opened to collect a sample.1.1 This test method covers procedures (A and B) for the determination of the hydrogen sulfide (H2S) content of fuel oils such as marine residual fuels and blend stocks, with viscosity up to 3000 mm2s-1 at 50 °C, and marine distillate fuels, as measured in the liquid phase.NOTE 1: Specification fuels falling within the scope of this test method are: ASTM Specification D396, MIL-DTL-16884, and ISO 8217.1.2 Procedure A has been shown to eliminate interferences such as thiols (mercaptans) and alkyl sulfides. Procedure B can give elevated results if such interferences are present (see Annex A2).NOTE 2: A procedure for measuring the amount of hydrogen sulfide in crude oil can be found in Appendix X1. Full precision for Appendix X1 has not yet been determined.1.3 Valid ranges for the precision are given in Table 2 and Table 3. Measurements can be made outside these ranges however precision has not been determined.1.4 Samples containing FAME do not affect the measurement of hydrogen sulfide by this test method.1.5 The values stated in SI units are to be regarded as standard. Non-SI units given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Low operating temperature fuel cells such as PEMFCs require high purity hydrogen for optimal performance and longevity. Organic halides and formaldehyde can react with catalyst in PEMs and non-methane hydrocarbons degrade PEM stack performance.1.1 The gas chromatography/mass spectrometry (GC/MS) procedure described in this test method is used to determine concentrations of total organic halides and total non-methane hydrocarbons (TNMHC) in hydrogen by measurement of individual target halocarbons (Table 1) and hydrocarbons (including formaldehyde, Table 1 and Table 2), respectively.1.2 Mention of trade names in this test method does not constitute endorsement or recommendation for use. Other manufacturers’ equipment or equipment models can be used.1.3 Units—The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This test method is suitable for setting specifications on industrial aromatic hydrocarbons and related materials and for use as an internal quality control tool.This test method is a qualitative one for hydrogen sulfide (H2S) and sulfur dioxide (SO2). It should not be considered quantitative. It gives an indication of the presence of H2S or SO2, or both, which may cause objectionable odors or be corrosive to certain materials of construction.1.1 This test method covers the determination of the hydrogen sulfide and sulfur dioxide content (qualitative) of industrial aromatic hydrocarbons.1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) require high purity hydrogen for maximum material performance and lifetime. The particulates in hydrogen used in FCVs and hydrogen powered internal combustion vehicles may adversely affect pneumatic control components, such as valves or other critical system components. The visualization of the size and morphology of particles is an important tool for determining particle origin as well as for devising particle formation reduction strategies.1.1 This test method is primarily intended for visualizing and measuring the sizes and morphology of particulates in hydrogen used as a fuel for fuel cell or internal combustion engine powered vehicles. This test method describes procedures required to obtain size and morphology data of known quality. This test method can be applied to other gaseous samples requiring determination of particulate sizes and morphology provided the user’s data quality objectives are satisfied.1.2 Mention of trade names in standard does not constitute endorsement or recommendation. Other manufacturers of equipment, software or equipment models can be used.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is especially useful for evaluating the adequacy of quenching when performed on material in the as-quenched condition. The practice may also be used to study the effect of subsequent thermal processes (for example, paint or bonding cures) or of actual precipitation treatments on the inherent type of corrosion. Intergranular corrosion resistance of heat treatable aluminum alloys is often directly related to the quenching conditions applied after solution heat treatment and to the subsequent aging treatment.44.2 This practice is not well suited for non-heat treatable work hardening aluminum alloys, such as the 1XXX, 3XXX, and 5XXX series (see Test Method G67).4.3 This practice does not deal with the interpretation of resulting intergranular corrosion. The significance of the extent and depth of any intergranular corrosion resulting from this test is to be agreed upon between producer and user.1.1 This practice covers the procedures for immersion tests in sodium chloride + hydrogen peroxide solution. It is primarily for tests of wrought heat treatable aluminum alloys (2XXX and 7XXX) but may be used for other aluminum alloys, including castings. It sets forth the specimen preparation procedures and the environmental conditions of the test and the means for controlling them.1.2 This practice is intended for evaluations during alloy development and for evaluating production where it may serve as a control test on the quality of successive lots of the same material (see MIL-H-6088 and U.S. Federal Test Method Std. 151b). Therefore strict test conditions are stipulated for maximum assurance that variations in results are attributable to lot-to-lot differences in the material being tested.NOTE 1: This practice does not address sampling or interpretation or significance of results.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Low operating temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) require high purity hydrogen for maximum performance. The following are the reported effects (SAE TIR J2719) of the compounds determined by this test method.5.2 Carbon Dioxide (CO2), acts largely as a diluent; however, in the fuel cell environment, CO2 can be transformed into CO.5.3 Water (H2O), is an inert impurity, as it does not affect the function of a fuel cell stack; however, it provides a transport mechanism for water-soluble contaminants, such as Na+ or K+. In addition, it may form ice on valve internal surface at cold weather or react exothermally with metal hydride used as hydrogen fuel storage.5.4 Inert Gases (N2 and Ar), do not normally react with fuel cell components or fuel cell system and are considered diluents. Diluents can decrease fuel cell stack performance.5.5 Oxygen (O2), in low concentrations is considered an inert impurity, as it does not adversely affect the function of a fuel cell stack; however, it is a safety concern for vehicle on board fuel storage as it can react violently with hydrogen to generate water and heat.1.1 This test method describes a procedure primarily for the determination of carbon dioxide, argon, nitrogen, oxygen, and water in high pressure fuel cell grade hydrogen by gas chromatograph/mass spectrometer (GC/MS) with injection of sample at the same pressure as sample without pressure reduction, which is called “Jet Pulse Injection.” The procedures described in this method were designed to measure carbon dioxide at 0.5 micromole per mole (ppmv), Argon 1 ppmv, nitrogen 5 ppmv, oxygen 2 ppmv, and water 4 ppmv.1.2 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 The mention of trade names in standard does not constitute endorsement or recommendation for use. Other manufacturers of equipment or equipment models can be used.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
122 条记录,每页 15 条,当前第 1 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页