微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This practice is used to outline the minimum necessary elements and conditions to obtain an accurate determination of the location of wet insulation in roofing systems using infrared imaging.4.2 This practice is not meant to be an instructional document or to provide all the knowledge and background necessary to provide an accurate analysis. For further information, see ANSI-ASHRAE Standard 101 and ISO/DP 6781.3E.4.3 This practice does not provide methods to determine the cause of moisture or its point of entry. It does not address the suitability of any particular system to function capably as waterproofing.1.1 This practice applies to techniques that employ infrared imaging at night to determine the location of wet insulation in roofing systems that have insulation above the deck in contact with the waterproofing. This practice includes ground-based and aerial inspections. (Warning—Extreme caution shall be taken when accessing or walking on roof surfaces and when operating aircraft at low altitudes, especially at night.) (Warning—It is a good safety practice for at least two people to be present on the roof surface at all times when ground-based inspections are being conducted.)1.2 This practice addresses criteria for infrared equipment such as minimum resolvable temperature difference, spectral range, instantaneous field of view, and field of view.1.3 This practice addresses meteorological conditions under which infrared inspections shall be performed.1.4 This practice addresses the effect of roof construction, material differences, and roof conditions on infrared inspections.1.5 This practice addresses operating procedures, operator qualifications, and operating practices.1.6 This practice also addresses verification of infrared data using invasive test methods.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 1.1.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Uranium dioxide is used as a nuclear-reactor fuel. Gadolinium oxide is used as an additive to uranium dioxide. In order to be suitable for this purpose, these materials must meet certain criteria for impurity content. This test method is designed to determine whether the carbon content meets Specifications C753, C776, C888, and C922.1.1 This test method covers the determination of carbon in nuclear-grade uranium oxide powders and pellets to determine compliance with specifications.1.2 Gadolinium oxide (Gd2O3) and gadolinium oxide-uranium oxide powders and pellets may also be analyzed using this test method.1.3 This test method covers the determination of 5 to 500 μg of residual carbon.1.4 This test method describes an induction furnace carrier gas combustion system equipped with an infrared detector. It may also be applied to a similar instrument equipped with a thermal conductivity detector.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5.1 The preferred system of units is micrograms carbon per gram of sample (μg/g sample) or micrograms carbon per gram of uranium (μg/g U).1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Benzene is a compound that endangers health, and the concentration is limited by environmental protection agencies to produce a less toxic gasoline.5.2 This test method is fast, simple to run, and inexpensive.5.3 This test method is applicable for quality control in the production and distribution of spark-ignition engine fuels.1.1 This test method covers the determination of the percentage of benzene in spark-ignition engine fuels. It is applicable to concentrations from 0.1 % to 5 % by volume.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The infrared spectrum of an electrical insulating oil is a record of the absorption of infrared energy over a range of wavelengths. The spectrum indicates the general chemical composition of the test specimen.NOTE 2: The infrared spectrum of a pure chemical compound is probably the most characteristic property of that compound. However, in the case of oils, multicomponent systems are being examined whose spectra are the sum total of all the spectra of the individual components. Because the absorption bands of the components may overlap, the spectrum of the oil is not as sharply defined as that for a single compound. For these reasons, these practices may not in every case be suitable for the quantitative estimation of the components of such a complex mixture as mineral oil.1.1 These practices are to be used for the recording and interpretation of infrared absorption spectra of electrical insulating oils from 4000 cm−1 to 400 cm−1 (2.5 μm to 25 μm).NOTE 1: While these practices are specific to ratio recording or optical null double-beam dispersive spectrophotometers, single-beam and HATR (horizontal attenuated total reflectance), Fourier-transform rapid scan infrared spectrophotometers may also be used. By computerized subtraction techniques, ratio methods can be used. Any of these types of equipment may be suitable if they comply with the specifications described in Practice E932.1.2 Two practices are covered, a Reference Standard Practice and a Differential Practice.1.3 These practices are designed primarily for use as rapid continuity tests for identifying a shipment of oil from a supplier by comparing its spectrum with that obtained from previous shipments, or with the sample on which approval tests were made. They also may be used for the detection of certain types of contamination in oils, and for the identification of oils in storage or service, by comparison of the spectra of the unknown and known oils. The practices are not intended for the determination of the various constituents of an oil.1.4 Warning—Infrared absorption is a tool of high resolving power. Conclusions as to continuity of oil quality should not be drawn until sufficient data have been accumulated so that the shipment-to-shipment variation is clearly established, for example.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The presence and concentration of oil and grease in domestic and industrial wastewater is of concern to the public because of its deleterious aesthetic effect and its impact on aquatic life.5.2 Regulations and standards have been established that require monitoring of oil and grease in water and wastewater.1.1 This test method covers the determination of oil and grease and nonpolar material in water and wastewater by an infrared (IR) determination of dimer/trimer of chlorotrifluoroethylene (S-316)2 extractable substances from an acidified sample. Included in this estimation of oil and grease are any other compounds soluble in the solvent.1.2 This test method is applicable to measurement of the light fuel although loss of some light ends during extraction can be expected.1.3 This test method defines oil and grease in water and wastewater as that which is extractable in the test method and measured by IR absorption at 2930 cm-1 or 3.4 microns. Similarly, this test method defines nonpolar material in water and wastewater as that oil and grease which is not adsorbed by silica gel in the test method and measured by IR absorption at 2930 cm-1.1.4 This test method covers the range of 5 to 100 mg/L and may be extended to a lower or higher level by extraction of a larger or smaller sample volume collected separately.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine (Guide D3856) the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The forest products finishing industry has encountered difficulties in measuring the temperature of painted surfaces prior to, during, and after the curing process. The use of thermocouples is not entirely satisfactory because the thermocouple wires tend to conduct heat away too rapidly from the area where the temperature is being measured. Infrared radiation thermometers that are simple to operate can circumvent this difficulty. After calibration they are aimed at the surface, switched on, and the temperature read directly from an indicating gage. Note 1—Temperature-sensitive crayons, papers, and pellets may be successfully used to measure only the highest temperature reached by painted surfaces during the curing cycle. There are several different types of infrared radiation thermometers, including those based on lead sulfide or thermistor sensors and those that are simple thermal voltaic transducers. As such they respond to different wavelengths of infrared radiation and have different areas of applicability. Only instruments that have been evaluated are included in this practice.1.1 This practice is intended to serve as a guide in measuring with infrared instruments the temperature during the curing process of coatings applied to wood products. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 There is a wide variety of nitration compounds that may be produced and accumulate when oils react with gaseous nitrates formed during the engine combustion process. These nitration products may increase the viscosity, acidity and insolubles in the oil, which may lead to ring sticking and filter plugging. Monitoring of nitration products is therefore an important parameter in determining overall machinery health and should be considered in conjunction with data from other tests such as atomic emission (AE) and atomic absorption (AA) spectroscopy for wear metal analysis (Test Method D5185), physical property tests (Test Methods D445 and D2896), and other FT-IR oil analysis methods for oxidation (Test Method D7414), sulfate by-products (Test Method D7415), and additive depletion (Test Method D7412), which also assess elements of the oil’s condition (1-6).1.1 This test method covers monitoring nitration in gasoline and natural gas engine oils as well as in other types of lubricants where nitration by-products may form due to the combustion process or other routes of formation of nitration compounds.1.2 This test method uses FT-IR spectroscopy for monitoring build-up of nitration by-products in in-service petroleum and hydrocarbon-based lubricants as a result of normal machinery operation. Nitration levels in gasoline and natural gas engine oils rise as combustion by-products react with the oil as a result of exhaust gas recirculation or a blow-by. This test method is designed as a fast, simple spectroscopic check for monitoring of nitration in in-service petroleum and hydrocarbon-based lubricants with the objective of helping diagnose the operational condition of the machine based on measuring the level of nitration in the oil.1.3 Acquisition of FT-IR spectral data for measuring nitration in in-service oil and lubricant samples is described in Practice D7418. In this test method, measurement and data interpretation parameters for nitration using both direct trend analysis and differential (spectral subtraction) trend analysis are presented.1.4 This test method is based on trending of spectral changes associated with nitration in in-service petroleum and hydrocarbon-based lubricants. For direct trend analysis, values are recorded directly from absorption spectra and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). For differential trend analysis, values are recorded from the differential spectra (spectrum obtained by subtraction of the spectrum of the reference oil from that of the in-service oil) and reported in units of 100*absorbance per 0.1 mm pathlength (or equivalently absorbance units per centimetre). Warnings or alarm limits can be set on the basis of a fixed maximum value for a single measurement or, alternatively, can be based on a rate of change of the response measured (1).2 In either case, such maintenance action limits should be determined through statistical analysis, history of the same or similar equipment, round robin tests or other methods in conjunction with the correlation of nitration changes to equipment performance.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.5 This test method is for petroleum and hydrocarbon-based lubricants and is not applicable for ester-based oils, including polyol esters or phosphate esters.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—The unit for wave numbers is cm-1.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide presents the use of spectral searching by curve matching search algorithms for data recorded using mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately. The purpose of this evaluation is the classification and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst, and is not an absolute identification technique, and hence, not intended to replace an expert in infrared spectroscopy and should not be used without suitable training. The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.1 Spectral searching is the process whereby a spectrum of an unknown material is evaluated against a library (database) of digitally recorded reference spectra. The purpose of this evaluation is classification of the unknown and, where possible, identification of the unknown. Spectral searching is intended as a screening method to assist the analyst and is not an absolute identification technique. Spectral searching is not intended to replace an expert in infrared spectroscopy. Spectral searching should not be used without suitable training.1.2 The user of this guide should be aware that the results of a spectral search can be affected by the following factors described in Section 5: (1) baselines, (2) sample purity, (3) Absorbance linearity (Beer’s Law), (4) sample thickness, (5) sample technique and preparation, (6) physical state of the sample, (7) wavenumber range, (8) spectral resolution, and (9) choice of algorithm.1.2.1 Many other factors can affect spectral searching results.1.3 The scope of this guide is to provide a guide for the use of search algorithms for mid-infrared spectroscopy. The methods described herein may be applicable to the use of these algorithms for other types of spectroscopic data, but each type of data search should be assessed separately.1.4 The Euclidean distance algorithm and the first derivative Euclidean distance algorithm are described and their use discussed. The theory and common assumptions made when using search algorithms are also discussed, along with guidelines for the use and interpretation of the search results.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The results of this practice may be used to distinguish tar-based emulsion from an asphalt-based emulsion for specification compliance purposes.1.1 This practice uses infrared analytical techniques to qualitatively determine in the laboratory a ratio of aromatic absorbance to aliphatic absorbance. This practice may be used to determine if the bitumen in the emulsion is predominantly aromatic or aliphatic in nature.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Trace amounts of water may be detrimental to the use of chlorine in some applications. The amount of water in the chlorine must be known to prevent problems during its use.1.1 This test method is designed for the on-line determination of the content of water in liquid chlorine in the concentration range of 0.5 to 15 mg/kg (ppm).1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7 and Note 3.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

AbstractThese practices cover a data system comprising procedures for the identification of individual chemical substances using infrared absorption spectroscopy and band indexes of spectral data. Although this data system is in use world wide as the largest publicly available data base, it does not represent the optimum way to generate a new data base with the most modern computerized equipment. In addition, the use of these practices requires encoded data and appropriate data handling equipment. The index data, which are available on magnetic tape, include codes for spectral data of chemical substances, chemical-structure classification, empirical formula, melting or boiling point, and serial number reference. Codes on sample state, wavelength intervals of strongest bands, and no-data areas are included as well.1.1 These practices cover a data system generated from 1955 through 1974. It is in world-wide use as the largest publicly available data base. It is recognized that it does not represent the optimum way to generate a new data base with the most modern computerized equipment.1.2 These practices describe procedures for identification of individual chemical substances using infrared absorption spectroscopy and band indexes of spectral data. Use of absorption spectroscopy for qualitative analysis has been described by many (), but the rapid matching of the spectrogram of a sample with a spectral data in the literature by use of a band index system designed for machine sorting was contributed by Kuentzel (). It is on Kuentzel's system that the ASTM indexes of absorption spectral data are based.1.3 Use of these practices requires, in addition to a recording spectrometer and access to published reference spectra, the encoded data and suitable data handling equipment.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 NIR spectroscopy is a widely used technique for quantitative analysis, and it is also becoming more widely used for the identification of organic materials, that is, qualitative analysis. In general, however, the concept of qualitative analysis as used in the NIR spectral region differs from that used in the mid-IR spectral region in that NIR qualitative analysis refers to the process of automated comparison of the spectra of unknown materials to the spectra of known materials in order to identify the unknown. This approach constitutes a library search method in which each user generates his own library.4.2 Historically, NIR spectroscopy as practiced with classical UV-VIS-NIR instruments using methods similar to those described in Practice E1252 was not considered to be a strong technique for qualitative analysis. Although the positions and intensities of absorption bands in specific wavelength ranges were used to confirm the presence of certain functional groups, the spectra were not considered to be specific enough to allow unequivocal identification of unknown materials. A few important libraries of NIR spectra were developed for qualitative purposes, but the lack of suitable data handling facilities limited the scope of qualitative analysis severely. Furthermore, earlier work was limited almost entirely to liquid samples.4.3 Currently, the mid-IR procedure of deducing the structure of an unknown material by method of analysis of the locations, strengths, and positional shifts of individual absorption bands is generally not used in the NIR.4.4 With the development of specialized NIR instruments and mathematical algorithms for treating the data, it became possible to obtain a wealth of information from NIR spectra that had hitherto gone unused. While the mathematical algorithms described in this practice can be applied to spectral data in any region, this practice describes their application to the NIR.4.5 The application of NIR spectroscopy to qualitative analysis in the manner described is relatively new, and procedures for this application are still evolving. The application of chemometric methods to spectroscopy has limitations, and the limitations are not all defined yet since the techniques are relatively new. One area of concern to some scientists is the effect of low-level contaminants. Any analytical methodology has its detection limits, and NIR is no different in this regard, but neither would we expect it to be any worse. Since the relatively broad character of NIR bands makes it unlikely that a contaminant would not overlap any of the measured wavelengths, the question would only be one of degree: whether a given amount of contaminant could be detected. The user must be aware of the probable contaminants he is liable to run into and account for the possibility of this occurring, perhaps by including deliberately contaminated samples in the training set.1.1 This practice covers the use of near-infrared (NIR) spectroscopy for the qualitative analysis of liquids and solids. The practice is written under the assumption that most NIR qualitative analyses will be performed with instruments designed specifically for this region and equipped with computerized data handling algorithms. In principle, however, the practice also applies to work with liquid samples using instruments designed for operation over the ultraviolet (UV), visible, and mid-infrared (IR) regions if suitable data handling capabilities are available. Many Fourier Transform Infrared (FTIR) (normally considered mid-IR instruments) have NIR capability, or at least extended-range beamsplitters that allow operation to 1.2 μm; this practice also applies to data from these instruments.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The percent sulfur content of the ash derived from coal or coke can be calculated to sulfur trioxide content. This information can be used in combination with results from the determination of major, minor and or trace elements in the same ash to calculate results on a sulfur trioxide free-basis or to calculate total recovered analyte.1.1 This test method describes a procedure using a high-temperature tube furnace and infrared detection for the determination of sulfur in coal and coke combustion residues, including lab ashes and residues from coal and coke combustion.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 FTIR spectroscopy can be employed for the classification of paint binder types and pigments as well as for the comparison of spectra from known and questioned coatings. When used for comparison purposes, the goal of the forensic examiner is to determine whether any meaningful differences exist between the known and questioned samples.5.2 This guide is designed to assist an examiner in the selection of appropriate sample preparation methods and instrumental parameters for the analysis, comparison or identification of paint binders and pigments.5.3 It is not the intent of this guide to present comprehensive theories and methods of FTIR spectroscopy. It is necessary that the examiner have an understanding of FTIR and general concepts of specimen preparation prior to using this guide. This information is available from manufacturers’ reference materials, training courses, and references such as: Forensic Applications of Infrared Spectroscopy (Suzuki, 1993) (4), Infrared Microspectroscopy of Forensic Paint Evidence (Ryland, 1995) (5), Use of Infrared Spectroscopy for the Characterization of Paint Fragments (Beveridge, 2001) (6), and An Infrared Spectroscopy Atlas for the Coatings Industry (2).1.1 This guide applies to the forensic IR analysis of paints and coatings and is intended to supplement information presented in the Forensic Paint Analysis and Comparison Guidelines (1)2 written by Scientific Working Group on Materials Analysis (SWGMAT). This guideline is limited to the discussion of Fourier Transform Infrared (FTIR) instruments and provides information on FTIR instrument setup, performance assessment, sample preparation, analysis and data interpretation. It is intended to provide an understanding of the requirements, benefits, limitations and proper use of IR accessories and sampling methods available for use by forensic paint examiners. The following accessory techniques will be discussed: FTIR microspectroscopy (transmission and reflectance), diamond cell and attenuated total reflectance. The particular methods employed by each examiner or laboratory, or both, are dependent upon available equipment, examiner training, specimen size or suitability, and purpose of examination. This guideline does not cover the theoretical aspects of many of the topics presented. These can be found in texts such as An Infrared Spectroscopy Atlas for the Coatings Industry (Federation of Societies for Coatings, 1991) (2) and Fourier Transform Infrared Spectrometry (Griffiths and de Haseth, 1986) (3).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Respirable crystalline silica is a hazard to the health of workers in many industries who are at risk through exposure by inhalation. Industrial hygienists and other public health professionals need to determine the effectiveness of measures taken to control workers’ exposure, and this is generally achieved by taking workplace air measurements. This standard has been published in order to make available a method for making valid exposure measurements for crystalline silica exposures in industry. It will be of benefit to: agencies concerned with health and safety at work; industrial hygienists and other public health professionals; analytical laboratories; industrial users of silica-containing products and their workers, etc.5.2 This standard specifies a generic sampling and analytical method for measurement of the mass concentration of respirable crystalline silica in workplace air using infrared (IR) spectrometric methods. Several different types of sampling apparatus are used to collect respirable dust, according to the occupational hygiene sampling convention. This standard is designed to accommodate a variety of appropriate samplers and sampling materials that are commercially available.1.1 This standard specifies a test method for collection and analysis of samples of airborne particulate matter for measurement of respirable crystalline silica by infrared (IR) spectrometry.1.2 This test method is applicable to the analysis of crystalline silica (the polymorphs quartz, cristobalite and tridymite) over a working range of 0.025 to 0.4 mg/m3 for a 400 L air sample or 0.02 to 0.25 mg/m3 for a 1000 L air sample, depending on the analytical method.1.3 The methodology is applicable to personal sampling of the respirable fraction of airborne particles and to static (area) sampling.1.4 This test method describes three different procedures for sample preparation and infrared analysis of airborne crystalline silica samples, which are delineated in Annex A1 – Annex A3, respectively: (1) a potassium bromide (KBr) disc IR measurement method, (2) indirect IR analysis after redeposition onto a filter used for measurement, and (3) direct on-filter IR analysis.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
102 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页