微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM E1166-00(2019) Standard Guide for Network Level Pavement Management Active 发布日期 :  1970-01-01 实施日期 : 

4.1 This guide provides network level PMS users with an outline of the basic components of a PMS to ensure the specific system the user selects or develops fulfills the agency needs and requirements.4.2 This guide may be used by agencies or organizations wishing to develop, evaluate, or refine a network level PMS.4.3 The basic components of the PMS described in this guide are location reference, information collection, database management, analysis, implementation, operation, and maintenance.4.4 Within each basic component a list of possible types of data, information, models, etc. are provided for consideration by the user agency. These lists are neither all inclusive nor exclusive. They are intended for guidance only.1.1 This guide outlines the basic components of a network level pavement management system (PMS).1.2 This guide is intended for use in the management of traveled pavement surfaces, including roads, airfields, and parking lots.1.3 This guide is not a standard method or practice, that is, it is not intended to provide a comprehensive PMS in a user specific application.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This guide supports the development of material behavior models that can be used to estimate performance of the EBS materials during the post-closure period of a high-level nuclear waste repository for times much longer than can be tested directly. This guide is intended for modeling the degradation behaviors of materials proposed for use in an EBS designed to contain radionuclides over tens of thousands of years and more. There is both national and international recognition of the importance of the use and long-term performance of engineered materials in geologic repository design. Use of the models developed following the approaches described in this guide is intended to address established regulations, such as:5.1.1 U.S. Public Law 97–425, the Nuclear Waste Policy Act of 1982, provides for the deep geologic disposal of high-level radioactive waste through a system of multiple barriers. These barriers include engineered barriers designed to prevent the migration of radionuclides out of the engineered system, and the geologic host medium that provides an additional transport barrier between the engineered system and biosphere. The regulations of the U.S. Nuclear Regulatory Commission for geologic disposal require a performance confirmation program to provide data through tests and analyses, where practicable, that demonstrate engineered systems and components that are designed or assumed to act as barriers after permanent closure are functioning as intended and anticipated.5.1.2 IAEA Safety Requirements specify that engineered barriers shall be designed and the host environment shall be selected to provide containment of the radionuclides associated with the wastes.5.1.3 The Swedish Regulatory Authority has provided general advice to the repository developer that the application of best available technique be followed in connection with disposal, which means that the siting, design, construction, and operation of the repository and appurtenant system components should be carried out so as to prevent, limit, and delay releases from both engineered and geological barriers as far as is reasonably possible.5.1.4 The Regulatory Authority in Finland identified the need to support the safety assessment stating that the input data and models utilized in the safety case shall be based on high-quality research data and expert judgement. Data and models shall be validated as far as possible and correspond to the conditions likely to prevail at the disposal site during the assessment period.5.1.5 The Office of Nuclear Regulation in the United Kingdom will regulate an operating geological repository under the Nuclear Installations Act through application of the Safety Assessment Principles developed for all nuclear facilities and the post-closure disposal period will be regulated under the Radioactive Substances Act by the Environmental Agency. A Memorandum of Understanding outlines how the two regulators work together10.5.2 This guide aids in defining acceptable methods for making useful estimations of long-term behavior of materials from such sources as test data, scientific theory, and analogs.5.3 This guide recognizes that technical information and test data regarding the actual behavior of EBS materials will by necessity be based on test durations that are short relative to the time periods required for geologic disposal (for example, thousands of years and longer). In addition to use in formulating acceptable long-term performance models, data from short-term tests are used to support EBS design and the selection of materials. For example, low confidence in the ability to model the degradation of one material may justify the selection of alternative EBS barrier materials that can be modelled with higher confidence. It is expected that the model will correctly represent material behavior in the intended applications of establishing design criteria, comparison of performance assessment results with safety limits, and so forth. See Section 21 for further discussion on model support and confidence.5.4 The EBS environment of interest is that defined by the natural conditions (for example, minerals, moisture, biota, and mechanical stresses); changes that occur over time, during repository construction and operation, and as a consequence of radionuclide decay, namely, radiation, radiation-induced damage, heating, and radiolytic effects on the solution chemistry; and changes that may occur over the post-closure period. Environmental conditions associated with disruptive events (for example, mechanical stress from seismic events) and processes (for example, changes in water chemistry) should also be considered.1.1 This guide addresses how various test methods and data analyses can be used to develop models for the evaluation of the long-term alteration behavior of materials used in an engineered barrier system (EBS) for the disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste forms and EBS materials is important because it affects the retention of radionuclides within the disposal system either directly, as in the case of waste forms in which the radionuclides are initially immobilized, or indirectly, as in the case of EBS containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms degrade.1.2 The purpose of this guide is to provide a scientifically-based strategy for developing models that can be used to estimate material alteration behavior after a repository is permanently closed (that is, in the post-closure period). Because the timescale involved with geological disposal precludes direct validation of predictions, mechanistic understanding of the processes based on detailed data and models and consideration of the range of uncertainty are recommended.1.3 This guide addresses the scientific bases and uncertainties in material behavior models and the impact on the confidence in the EBS design criteria and repository performance assessments using those models. This includes the identification and use of conservative assumptions to address uncertainty in the long-term performance of materials.1.3.1 Steps involved in evaluating the performance of waste forms and EBS materials include problem definition, laboratory and field testing, modeling of individual and coupled processes, and model confirmation.1.3.2 The estimates of waste form and EBS material performance are based on models derived from theoretical considerations, expert judgments, and interpretations of data obtained from tests and analyses of appropriate analogs.1.3.3 For the purpose of this guide, tests are categorized according to the information they provide and how it is used for model development, support, and use. These tests may include but are not limited to: attribute tests, characterization tests, accelerated tests, service condition tests, and confirmation tests.1.4 This guide does not address testing required to define or characterize the repository environment (that is, the groundwater quantity or chemistry, host rock properties, etc.). The logical approach and testing concepts described herein can be applied to the disposal system.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

4.1 This test method is designed to quantify the static and dynamic characteristics of different designs of single level spinal constructs. Wear may also be assessed for implants that allow motion using testing medium (see 6.1) for simulating the physiologic environment at 37 °C. Wear is assessed using a weight loss method in addition to dimensional analyses. Weight loss is determined after subjecting the implants to dynamic profiles specified in this test method. This information will allow the manufacturer or end user of the product to understand how the specific device in question performs under the test conditions prescribed in this test method.4.2 This test method is intended to be applicable for single level extra-discal spinal constructs. Three different types of fixtures are specified for testing single level extra-discal spinal constructs See Fig. 2, Fig. 4, and Fig. 5. See also Table 1.4.3 Implants may be designed using a variety of materials (for example, ceramics, metals, polymers, or combinations thereof), and it is the goal of this test method to enable a comparison of the static, dynamic, and wear properties generated by these devices, regardless of material and type of device.AbstractThis test method deals with static, dynamic, and wear testing of extra-discal motion preserving implants. These implants are intended to augment spinal stability without significant tissue removal while allowing motion of the functional spinal unit(s). Wear is assessed using a weight loss method and a dimensional analysis for determining wear of components used in extra-discal spinal motion preserving procedures, using testing medium as defined in this test method. This test method is not intended to address facet arthroplasty devices and any potential failure mode as it relates to the fixation of the device to its bony interfaces; and does not prescribe methods for assessing the mechanical characteristics of the device in translation. The static test includes the static flexion test, static extension test, static torsion test, static lateral bending test, and fatigue tests. Wear test includes flexion/extension wear assessment, rotational wear assessment, and bending wear assessment. The apparatus which shall be used includes implant components and spinal testing apparatus. The calculation and interpretation of wear results are also elaborated.1.1 This test method describes methods to assess the static and dynamic properties of single level spinal constructs.1.2 An option for assessing wear using a weight loss method and a dimensional analysis is given. This method, described herein, is used for the analysis of devices intended for motion preservation, using testing medium as defined in this standard (6.1).1.3 This test method is not intended to address any potential failure mode as it relates to the fixation of the device to its bony interfaces.1.4 It is the intent of this test method to enable single level extra-discal spinal constructs with regard to kinematic, functional, and wear characteristics when tested under the specified conditions.1.5 This test method is not intended to address facet arthroplasty devices.1.6 In order that the data be reproducible and comparable within and between laboratories, it is essential that uniform procedures be established. This test method is intended to facilitate uniform testing methods and data reporting.1.7 The motion profiles specified by this test method do not necessarily accurately reproduce those occurring in vivo. Rather this method provides useful boundary/endpoint conditions for evaluating implant designs in a functional manner.1.8 This test method is not intended to be a performance standard. It is the responsibility of the user of this test method to characterize the safety and effectiveness of the device under evaluation.1.9 Multiple test methods are included in this standard. However, it must be noted that the user is not obligated to test using all of the described methods. Instead, the user should only select test methods that are appropriate for a particular device design. In most instances, only a subset of the herein described test methods will be required.1.10 The values stated in SI units are to be regarded as the standard with the exception of angular measurements, which may be reported in either degrees or radians. No other units of measurement are included in this standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The purpose of this guide is to establish a minimum level of knowledge and skills for the water rescue responder. The application will improve the quality of initial emergency response, the rescue of the water victims, and the safety of the rescuers.4.2 All persons who are identified as water rescuers and water rescue responders shall meet the requirements of this guide.4.3 This guide does not preclude the scope of performances for water rescuers needing more advanced or more specialized water rescue training.4.4 This guide will assist government agencies, state, local, or regional organizations; fire departments; rescue teams, and others who are responsible for establishing a minimum performance for personnel who respond to water emergencies.1.1 This guide covers minimum requirements for the scope of performance of a water rescuer I who may be responsible for the initial on scene evaluation, performing land based water rescues, and providing initial patient care at a water rescue incident.1.2 This guide is one in a series; water rescuer I is only a beginning level designed for a water rescue responder. Duties and responsibilities at water rescue operations vary according to the water rescuer's skills and knowledge. As the water rescuer level I progresses and becomes more proficient, the individual will move from responder to in-water rescuer to rescue boat operator.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is used for determination of the carbon content of water from a variety of natural, domestic, and industrial sources. In its most common form, this test method is used to measure organic carbon as a means of monitoring organic impurities in high purity process water used in industries such as nuclear power, pharmaceutical, and electronics. 1.1 This test method covers the determination of total carbon (TC), inorganic carbon (IC), and total organic carbon (TOC) in water in the range from 10 to 1000 μg/L of carbon. This method is for laboratory or grab sample applications and has been subjected to an interlaboratory study under the guidelines of D2777. Test Method D5997 can be used for on-line determinations. The test method utilizes persulfate or ultraviolet oxidation of organic carbon, or both coupled with a CO2 selective membrane to recover the CO2 into deionized water. The change in conductivity of the deionized water is measured and related to carbon concentration in the oxidized sample. Inorganic carbon is determined in a similar manner without the oxidation step. In both cases, the sample is acidified to facilitate CO2 recovery through the membrane. The relationship between the conductivity measurement and carbon concentration is described by a set of chemometric equations for the chemical equilibrium of CO2, HCO3– , and H+, and the relationship between the ionic concentrations and the conductivity. The chemometric model includes the temperature dependence of the equilibrium constants and the specific conductances resulting in linear response of the method over the stated range of TOC. See Test Method D4519 for a discussion of the measurement of CO2 by conductivity. 1.2 This test method has the advantage of a very high sensitivity detector that allows very low detection levels on relatively small volumes of sample. Also, use of two measurement channels allows determination of CO2 in the sample independently of organic carbon. Isolation of the conductivity detector from the sample by the CO2 selective membrane results in a very stable calibration, with minimal interferences. 1.3 This test method was used successfully with reagent water spiked with various organic materials. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices. 1.4 In addition to laboratory analyses, this test method may be adapted to on line monitoring. See Test Method D5997. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
102 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页