微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The test method is used widely for specification purposes and is used to differentiate between greases having low, medium, or high levels of extreme pressure characteristics. The results may not correlate with results from service.1.1 This test method covers the determination of the load-carrying capacity of lubricating greases by means of the Timken Extreme Pressure Tester.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.1, 7.2, and 9.4.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method measures a lubricant's ability to protect hypoid final drive axles from abrasive wear, adhesive wear, plastic deformation, and surface fatigue when subjected to low-speed, high-torque conditions. Lack of protection can lead to premature gear or bearing failure, or both.5.2 This test method is used, or referred to, in specifications and classifications of rear-axle gear lubricants such as:5.2.1 Specification D7450.5.2.2 American Petroleum Institute (API) Publication 1560.5.2.3 SAE J308.5.2.4 SAE J2360.1.1 This test method, commonly referred to as the L-37-1 test, describes a test procedure for evaluating the load-carrying capacity, wear performance, and extreme pressure properties of a gear lubricant in a hypoid axle under conditions of low-speed, high-torque operation.31.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct SI equivalent such as National Pipe threads/diameters, tubing size, or where there is a sole source supply equipment specification.1.2.1.1 The drawing in Annex A6 is in inch-pound units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are provided in 7.2 and 10.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The thickness of a geotextile decreases with increase in the normal compressive stress. This decrease in thickness may result in the partial closing or the opening of the voids of geotextile depending on its initial structure and the boundary conditions.5.2 This test method measures the permittivity due to a change of void structure of a geotextile as a result of an applied compressive stress.1.1 This test method covers the determination of the water permittivity behavior of geotextiles in a direction normal to the plane of the geotextile when subjected to specific normal compressive loads.1.2 Use of this test method is limited to geotextiles. This test method is not intended for application with geotextile-related products such as geogrids, geonets, geomembranes, and other geocomposites.1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The bi-directional axial compressive load test provides separate, direct measurements of the pile side shear mobilized above an embedded jack assembly and the pile end bearing plus any side shear mobilized below the jack assembly. The maximum mobilized pile resistance equals two times the maximum load applied by the jack assembly. Test results may also provide information used to assess the distribution of side shear resistance along the pile, the amount of end bearing mobilized at the pile bottom, and the long-term load-displacement behavior.4.2 The specified maximum test load should be consistent with the engineer’s desired test outcome. For permanent (working) piles, the engineer may require that the magnitude of applied test load be limited in order to measure the pile movement at a predetermined proof load as part of a quality control or quality assurance program. Tests that attempt to fully mobilize the axial compressive resistance of the test pile may allow the engineer to improve the efficiency of the pile design by reducing the piling length, quantity, or size.4.3 The engineer and other interested parties may analyze the results of a bi-directional axial compressive load test to estimate the load versus movement behavior and the pile capacity that would be measured during axial static compressive or tensile loading applied at the pile top (see Notes 1-3). Factors that may affect the pile response to axial static loading during a static test include, but are not limited to the:(1) pile installation equipment and procedures,(2) elapsed time since initial installation,(3) pile material properties and dimensions,(4) type, density, strength, stratification, and groundwater conditions both adjacent to and beneath the pile,(5) test procedure,(6) prior load cycles.NOTE 1: To estimate the load displacement curve for the pile as if it were loaded in compression at the top (as in Test Methods D1143/D1143M), the engineer may use strain and movement compatibility to sum the pile capacity mobilized above and below the embedded jack assembly for a given pile-top movement. This “top-load” curve will be limited by the lesser of the displacement measured above or below the embedded jack assembly. To obtain adequate minimum displacement during the test, the engineer may wish to specify a maximum test load greater than the desired equivalent “top load”.NOTE 2: A bi-directional load test applies the test load within the pile, resulting in internal pile stresses and pile displacements that differ from those developed during a load test applied at the pile top. Bi-directional testing will generally not test the structural suitability of a pile to support a load as typically placed at the pile top. Structural defects near the pile top may go undetected unless separate integrity tests are performed prior to or after bi-directional testing (see Note 8). The analysis of bi-directional load test results to estimate the pile-top movement that would be measured by applying a compressive load at the top of the pile should consider strain compatibility and load-displacement behavior. ASTM D1143/D1143M provides a standard test method for the direct measurement of pile top movement during an axial static compressive load applied at the pile top.NOTE 3: The analysis of bi-directional load test results to estimate pile displacements that would be measured by applying a tensile (uplift) load at the top of the pile should consider strain and movement compatibility. Users of this standard are cautioned to interpret conservatively the tensile capacity estimated from the analysis of a compressive load. ASTM D3689/D3689M provides a standard test method for the direct measurement of axial static tensile capacity.4.4 For the purpose of fully mobilizing the axial compressive capacity, the engineer will usually locate the jack assembly at a location within pile where the capacity above the assembly equals the capacity below it. A poorly chosen assembly location may result in excessive movement above or below the jack assembly, limiting the applied load and reducing the usefulness of the test result. Determination of the assembly’s location requires suitable site characterization, consideration of construction methods, and the proper application of engineering principles and judgement (see Note 4). More complex test configurations, using multiple levels of jack assemblies, may provide a higher probability that the full resistance of the pile along its entire length may be determined. Details regarding such complex arrangements are beyond the scope of this standard.NOTE 4: The bi-directional load test may not fully mobilize the axial compressive pile resistance in all sections of the pile. Practical, economical, or code considerations may also result in bi-directional load tests that are not intended to fully mobilize the axial resistance in some or all sections of the pile. In these cases, interpretation of the bi-directional test may under-predict the total axial compressive capacity of the pile.NOTE 5: The quality of the results produced by this test method are dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/ inspection/etc. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 The test methods described in this standard measure the axial displacement of a single, deep foundation element when loaded in bi-directional static axial compression using an embedded bi-directional jack assembly. These methods apply to all deep foundations, referred to herein as “piles,” which function in a manner similar to driven piles, cast in place piles, or barrettes, regardless of their method of installation. The test results may not represent the long-term performance of a deep foundation.1.2 This standard provides minimum requirements for testing deep foundations under bi-directional static axial compressive load. Plans, specifications, and/or provisions prepared by a qualified engineer may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in charge of the foundation design, referred to herein as the engineer, shall approve any deviations, deletions, or additions to the requirements of this standard.1.3 This standard provides the following test procedures:Procedure A Quick Test 9.2.1Procedure B Extended Test (optional) 9.2.21.4 Apparatus and procedures herein designated “optional” may produce different test results and may be used only when approved by the engineer. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.1.5 The engineer may use the results obtained from the test procedures in this standard to predict the actual performance and adequacy of piles used in the constructed foundation. See Appendix X1 for comments regarding some of the factors influencing the interpretation of test results.1.6 A qualified engineer (specialty engineer, not to be confused with the foundation engineer as defined above) shall design and approve the load test configuration and test procedures. The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. This standard also includes illustrations and appendixes intended only for explanatory or advisory use.1.7 Units—The values stated in either SI units or inch-pound units (presented in brackets) are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.8 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F=ma) calculations are involved.1.9 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.9.1 The procedures used to specify how data are collected, recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.10 This standard offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Intervertebral body fusion devices are generally simple geometric-shaped devices, which are often porous or hollow in nature. Their function is to support the anterior column of the spine to facilitate arthrodesis of the motion segment.5.2 This test method is designed to quantify the subsidence characteristics of different designs of intervertebral body fusion devices since this is a potential clinical failure mode. These tests are conducted in vitro in order to simplify the comparison of simulated vertebral body subsidence induced by the intervertebral body fusion devices.5.3 The static axial compressive loads that will be applied to the intervertebral body fusion devices and test blocks will differ from the complex loading seen in vivo, and therefore, the results from this test method may not be used to directly predict in vivo performance. The results, however, can be used to compare the varying degrees of subsidence between different intervertebral body fusion device designs for a given density of simulated bone.5.4 The location within the simulated vertebral bodies and position of the intervertebral body fusion device with respect to the loading axis will be dependent upon the design and manufacturer's recommendation for implant placement.1.1 This test method specifies the materials and methods for the axial compressive subsidence testing of non-biologic intervertebral body fusion devices, spinal implants designed to promote arthrodesis at a given spinal motion segment.1.2 This test method is intended to provide a basis for the mechanical comparison among past, present, and future non-biologic intervertebral body fusion devices. This test method is intended to enable the user to mechanically compare intervertebral body fusion devices and does not purport to provide performance standards for intervertebral body fusion devices.1.3 This test method describes a static test method by specifying a load type and a specific method of applying this load. This test method is designed to allow for the comparative evaluation of intervertebral body fusion devices.1.4 Guidelines are established for measuring test block deformation and determining the subsidence of intervertebral body fusion devices.1.5 Since some intervertebral body fusion devices require the use of additional implants for stabilization, the testing of these types of implants may not be in accordance with the manufacturer's recommended usage.1.6 Units—The values stated in SI units are to be regarded as the standard with the exception of angular measurements, which may be reported in terms of either degrees or radians.1.7 The use of this standard may involve the operation of potentially hazardous equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is designed to aid those interested in the engineering properties of roofing membranes.4.2 The data obtained will not permit prediction of the service life of a membrane under field conditions. The data will provide a basis for study of the mechanical properties of the membrane. Note that if strain rates, specimen dimensions, initial clear distance between clamps, or temperatures and moisture contents are varied, the data may not be strictly comparable.1.1 This practice is a guide for determining the load-strain properties of roofing membranes and their components at various temperatures. Test specimens may be prepared in the laboratory or cut from samples obtained in the field.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Based on the measurements of force and displacement at the pile top, possibly combined with those from accelerometers or strain transducers located further down the pile, these test methods measure the pile top deflection in response to an axial compressive force pulse. The relatively long duration of the force pulse compared to the natural period of the test pile causes the pile to compress and translate approximately as a unit during a portion of the pulse, simultaneously mobilizing compressive axial static resistance and dynamic resistance at all points along the length of the pile for that portion of the test.4.2 The compressive axial static resistance is derived from the test data and is therefore an indirect result. Test Method D1143/D1143M provides a direct and therefore more reliable measurement of static resistance.4.3 The Engineer should ensure that the test as specified will generate the required peak force to meet the purpose of the test. In case that purpose is to establish geotechnical failure, the Engineer should also ensure that peak force results in significant permanent axial movement during the axial force pulse event.4.4 The Engineer may analyze the acquired data using engineering principles and judgment to evaluate the performance of the force pulse apparatus, and the characteristics of the pile's response to the force pulse loading. This analysis typically includes a reduction factor to account for the loading rate effect, that is, additional load resistance that occurs as a result of a faster rate of loading than used during a static test. Test results from piles installed in cohesive soils generally require a greater reduction. The Engineer should determine how the type, size, and shape of the pile, and the properties of the soil or rock beneath and adjacent to the pile, affect the rate-of-loading reduction factors and the amount of movement required to mobilize and accurately assess the static resistance by eliminating the dynamic component of the response.4.5 The scope of this standard does not include analysis for foundation capacity, but in order to analyze the test data appropriately it is important that information on factors that affect the derived axial static capacity is properly documented. These factors may include, but are not limited to, the: (1) pile installation equipment and procedures, (2) elapsed time since initial installation, (3) pile material properties and dimensions, (4) type, density, strength, stratification, and saturation of the soil, or rock, or both adjacent to and beneath the pile, (5) quality of force pulse test data, and (6) final foundation settlement.4.6 The accuracy of the derived results may improve when using additional strain transducers embedded in the pile. When combined with an appropriate method of analysis, the Engineer may use data from these optional transducers to estimate the relative contribution of side shear and end bearing to the mobilized axial static compressive resistance of the pile, or to infer the relative contribution of certain soil layers to the overall mobilized axial compressive resistance of the pile.NOTE 1: The quality of the result produced by these test methods is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing and inspection. Users of these test methods are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These test methods, commonly referred to as Rapid Load Testing, cover procedures for testing an individual vertical or inclined deep foundation element to determine the displacement response to an axial compressive force pulse applied at its top. These non-static foundation test methods apply to all deep foundation units, referred to herein as “piles,” that function in a manner similar to driven or cast-in-place piles, regardless of their method of installation.1.2 Two alternative procedures are provided:1.2.1 Procedure A uses a combustion gas pressure apparatus to produce the required axial compressive force pulse.1.2.2 Procedure B uses a cushioned drop mass apparatus to produce the required axial compressive force pulse.1.3 This standard provides minimum requirements for testing deep foundations under an axial compressive force pulse. Plans, specifications, provisions (or combinations thereof) prepared by a qualified engineer, may provide additional requirements and procedures as needed to satisfy the objectives of a particular deep foundation test program. The engineer in responsible charge of the foundation design, referred to herein as the “Engineer,” shall approve any deviations, deletions, or additions to the requirements of this standard.1.4 The proper conduct and evaluation of the test requires special knowledge and experience. A qualified engineer should directly supervise the acquisition of field data and the interpretation of the test results so as to predict the actual performance and adequacy of deep foundations used in the constructed foundation. A qualified engineer shall approve the apparatus used for applying the force pulse, rigging and hoisting equipment, support frames, templates, and test procedures.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.7.1 The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering data1.8 The method used to specify how data are collected, calculated or recorded in this standard is not directly related to the accuracy to which the data can be applied in the design or other uses, or both. How one uses the results obtained using this standard is beyond its scope.1.9 ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Section 7 provides a partial list of specific hazards and precautions.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is considered satisfactory for acceptance testing of commercial shipments of narrow elastic fabrics because the test method is used in the trade for acceptance testing.5.1.1 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the parties should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using student's t-test for unpaired data and an acceptable probability level chosen by the two parties before testing is begun. If bias is found, either the cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in the light of the known bias.5.2 This test method specifies the use of a static load apparatus. Users of this test method are cautioned that elongation test data obtained using this test method are not comparable to elongation test data obtained using either constant-rate-of-extension (CRE) or constant-rate-of-loading (CRL) type tensile testing machines.1.1 This test method determines the elongation characteristics of narrow elastic fabrics made from natural or man-made elastomers, either alone or in combination with other textile fibers, when tested with a static load testing procedure before or after laundering.NOTE 1: For determination of similar characteristics using the constant-rate-of-extension (CRE) type tensile testing machine, refer to Test Method D4964.NOTE 2: For determination of similar characteristics using the constant-rate-of load (CRL) type tensile testing machine, refer to Test Method D1775.1.2 The use of this test method requires the selection of, or mutual agreement upon, the effective static load at which the test results will be determined.1.3 Laundering procedures used will be those specified in Test Method AATCC 135 for 3 washing and drying cycles.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test is particularly suited to control and development work. Data obtained by this test method shall not be used to predict the behavior of plastic materials at elevated temperatures except in applications in which the factors of time, temperature, method of loading, and fiber stress are similar to those specified in this test method. The data are not intended for use in design or predicting endurance at elevated temperatures.5.2 For many materials, it is possible there will be a specification that requires the use of this test method, but with some procedural modifications that take precedence when adhering to the specification. Therefore, it is advisable to refer to that material specification before using this test method. Refer to Table 1 in Classification D4000, which lists the ASTM material standards that currently exist.1.1 This test method covers the determination of the temperature at which an arbitrary deformation occurs when specimens are subjected to an arbitrary set of testing conditions.1.2 This test method applies to molded and sheet materials available in thicknesses of 3 mm (1/8 in.) or greater and which are rigid or semirigid at normal temperature.NOTE 1: Sheet stock less than 3 mm (0.125 in.) but more than 1 mm (0.040 in.) in thickness may be tested by use of a composite sample having a minimum thickness of 3 mm. The laminae must be of uniform stress distribution. One type of composite specimen has been prepared by cementing the ends of the laminae together and then smoothing the edges with sandpaper. The direction of loading shall be perpendicular to the edges of the individual laminae.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard and ASTM D648 address the same subject matter and are essentially the same test. However, due to known differences in results caused by the differences in heat transfer media, the results from this standard and ASTM D648 must not be compared or considered equivalent.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.NOTE 3: This standard and ISO 75-1 and ISO 75-2 address the same subject matter, but differ in technical content, and results shall not be compared between the two test methods.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Framed floor and roof systems are tested by this test method for static shear capacity. This test method will help determine structural diaphragm properties needed for design purposes.1.1 This test method covers procedures designed (1) to evaluate the static shear capacity of a typical segment of a framed diaphragm under simulated loading conditions, and (2) to provide a determination of the stiffness of the construction and its connections. A diaphragm construction is an assembly of materials designed to transmit shear forces in the plane of the construction.1.2 No effort has been made to specify the test apparatus, as there are a number that can be used as long as the needs of the testing agency are met. If round-robin testing is to be conducted, test apparatus and testing procedures shall be mutually agreed upon in advance by the participants.1.3 The text of this standard contains notes and footnotes that provide explanatory information and are not requirements of the standard. Notes and footnotes in tables and figures are requirements of this standard.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method will provide a relationship between time to failure, creep rate, and displacement to failure for specific failure loads at specific test temperatures as well as a relationship between creep rate and applied load at specific test temperatures for loads less than failure loads.4.2 Pile design for specific soil temperatures may be controlled by either limiting long-term stress to below long-term strength or by limiting allowable settlement over the design life of the structure. It is the purpose of this test method to provide the basic information from which the limiting strength or long-term settlement may be evaluated by geotechnical engineers.4.3 Data derived from pile tests at specific ground temperatures that differ from the design temperatures must be corrected to the design temperature by the use of data from additional pile tests, laboratory soil strength tests, or published correlations, if applicable, to provide a suitable means of correction.4.4 For driven piles or grouted piles, failure will occur at the pile/soil interface. For slurry piles, failure can occur at either the pile/slurry interface or the slurry/soil interface, depending on the strength and deformation properties of the slurry material and the adfreeze bond strength. Location of the failure surface must be taken into account in the design of the test program and in the interpretation of the test results. Dynamic loads must be evaluated separately.NOTE 1: The quality of the results produced by application of this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 The test methods described in this standard measure the axial deflection of a vertical or inclined deep foundation when loaded in static axial compression. These methods apply to all deep foundations, referred to herein as piles, that function in a manner similar to driven piles or cast-in-place piles, regardless of their method of installation, and may be used for testing single piles or pile groups. The test results may not represent the long-term performance of a deep foundation.1.2 This standard provides minimum requirements for testing deep foundations under static axial compressive load. Plans, specifications, and/or provisions prepared by a qualified engineer may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in responsible charge of the foundation design, referred to herein as the Engineer, shall approve any deviations, deletions, or additions to the requirements of this standard.1.3 This standard allows the following test procedures:Procedure A Quick Test 8.1.2Procedure B Maintained Test (Optional) 8.1.3Procedure C Loading in Excess of Maintained Test (Optional) 8.1.4Procedure D Constant Time Interval Test (Optional) 8.1.5Procedure E Constant Rate of Penetration Test (Optional) 8.1.6Procedure F Constant Movement Increment Test (Optional) 8.1.7Procedure G Cyclic Loading Test (Optional) 8.1.81.4 Apparatus and procedures herein designated “optional” may produce different test results and may be used only when approved by the Engineer. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.1.5 A qualified geotechnical engineer should interpret the test results obtained from the procedures of this standard so as to predict the actual performance and adequacy of piles used in the constructed foundation. See Appendix X1 for comments regarding some of the factors influencing the interpretation of test results.1.6 A qualified engineer shall design and approve all loading apparatus, loaded members, support frames, and test procedures. The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. This standard also includes illustrations and appendixes intended only for explanatory or advisory use.1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.8 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound [lbf] represents a unit of force [weight], while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic [F=ma] calculations are involved.1.9 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.10 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Transverse Load—The procedures outlined will serve to evaluate the performance of floor and roof segments for deflection, permanent set and ultimate capacity. Performance criteria based on data from these procedures can ensure structural adequacy and effective service.4.2 Concentrated Load—This concentrated load test shall be used to evaluate surface indentation of structural framing members.4.3 These procedures will serve to evaluate performance of roof and floor segments under simulated service conditions. Diaphragm shear loading of roof and floor segments shall be evaluated under Test Method E455. Impact loading shall be evaluated under Test Methods E661 or E695.1.1 This test method covers the following procedures for determining the structural properties of segments of floor and roof constructions:    Section  Test Specimens 5  Loading 6  Deformation Measurements 7  Report 8  Precision and Bias 9   Testing Floors    Transverse Load 10  Concentrated Load 11   Testing Roofs    Transverse Load 12  Concentrated Load 131.2 This test method serves to evaluate the performance of floors and roofs panels subjected to (1) Uniform loading, and (2) Concentrated static loading, which represent conditions sustained in the actual performance of the element. The standard is not intended for the evaluation of individual structural framing or supporting members (floor joist, rafters, and trusses), or both.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes, excluding those in tables and figures, shall not be considered as requirements of the standard.1.4 This standard is not intended to cover concrete floor slabs.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the procedure for testing and evaluating duration of load and creep effects of wood and wood-based materials relative to an accepted duration of load adjustment model. This specification is proposed for use for products that are covered by a consensus standard such as lumber, structural composite lumber and structural use panels. The procedure covered in this specification, however, is not intended to evaluate performance of products under impact loading.1.1 This specification provides a procedure for testing and evaluating duration of load and creep effects of wood and wood-based materials relative to an accepted duration of load adjustment model. This specification was created for products that are currently covered by a consensus standard (for example, lumber, structural composite lumber, and structural-use panels). This procedure is intended to demonstrate the engineering equivalence to the duration of load and creep effects of visually graded lumber as specified in Practice D245 for a product under evaluation used in dry service conditions. This procedure is not intended to evaluate the performance of products under impact loading. Quantification of specific duration of load or creep factors is beyond the scope of this specification. For further guidance regarding the applicability of this specification refer to X1.1 in the Commentary.1.2 Use of the procedure in this specification to determine equivalence to the Practice D245 duration of load relationship is limited to solid wood and wood-based products whose long term load behavior is similar to that of solid wood. Equivalence demonstrated in this specification is dependent upon evaluation of a product's 90-day (minimum) creep-rupture performance. In this evaluation, three criteria must be satisfied: (1) adequate strength over a 90-day period, (2) decreasing creep rate, and (3) limited fractional deflection. A summary of the development of these criteria and the underlying assumptions behind them is provided in the Commentary in Appendix X1 and Appendix X2.1.3 Long term degradation phenomena not described by a creep-rupture model are not addressed in this specification (see Commentary X1.2.4).1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers reinforced concrete pipe, D-load culvert, storm drain, and sewer pipe for the conveyance of sewage, industrial wastes, and storm water. The numerical values in this specification are not presented in inch-pound units, but rather, in metric or SI units only. The reinforced concrete shall consist of cementitious materials, mineral aggregates, and water, in which steel has been embedded in such a manner that the steel and concrete act together. The combination of cementitious materials used in the concrete shall be only one of the following: Portland cement, Portland blast furnace slag cement, slag modified Portland cement, Portland pozzolan cement, a combination of Portland cement and fly ash, a combination of Portland cement and ground granulated blast-furnace slag, or a combination of Portland cement, ground granulated blast furnace slag, and fly ash. Reinforcement shall conform to the standard specification. Physical requirements shall conform to the design strength designation of the pipe during load test. The aggregates shall be sized, graded, proportioned, and mixed with such proportions of cementitious materials and water as will produce a homogeneous concrete mixture of such quality that the pipe shall conform to the test and design requirements of this specification. The strength of the pipe shall not be adversely affected by the splice. Compression tests for determining concrete compressive strength shall be allowed to be made on either concrete cylinders or on cores drilled from the pipe. Pipe shall be repaired, if necessary, because of imperfections in manufacture, damage during handling, or pipe that have been cored for testing.1.1 This specification covers reinforced concrete pipe designed for specific D-loads and intended to be used for the conveyance of sewage, industrial wastes, and storm water and for the construction of culverts.1.2 This specification is the inch-pound companion to Specification C655M; therefore, no SI equivalents are presented in this specification. Reinforced concrete pipe that conform to the requirements of C655M are acceptable under this Specification C655 unless prohibited by the Owner.NOTE 1: Experience has shown that the successful performance of this product depends upon the proper selection of the pipe strength, the type of bedding and backfill, the care that the installation conforms to the construction specifications, and provision for adequate inspection at the construction site. This specification does not include requirements for bedding, backfill, the relationship between field load conditions and the strength designation of pipe, or durability under unusual environmental conditions. These requirements should be included in the project specification.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers reinforced concrete pipe, D-load culvert, storm drain, and sewer pipe for the conveyance of sewage, industrial wastes, and storm water. The numerical values in this specification are not presented in inch-pound units, but rather, in metric or SI units only. The reinforced concrete shall consist of cementitious materials, mineral aggregates, and water, in which steel has been embedded in such a manner that the steel and concrete act together. The combination of cementitious materials used in the concrete shall be only one of the following: Portland cement, Portland blast furnace slag cement, slag modified Portland cement, Portland pozzolan cement, a combination of Portland cement and fly ash, a combination of Portland cement and ground granulated blast-furnace slag, or a combination of Portland cement, ground granulated blast furnace slag, and fly ash. Reinforcement shall conform to the standard specification. Physical requirements shall conform to the design strength designation of the pipe during load test. The aggregates shall be sized, graded, proportioned, and mixed with such proportions of cementitious materials and water as will produce a homogeneous concrete mixture of such quality that the pipe shall conform to the test and design requirements of this specification. The strength of the pipe shall not be adversely affected by the splice. Compression tests for determining concrete compressive strength shall be allowed to be made on either concrete cylinders or on cores drilled from the pipe. Pipe shall be repaired, if necessary, because of imperfections in manufacture, damage during handling, or pipe that have been cored for testing.1.1 This specification covers reinforced concrete pipe designed for specific D-loads and intended to be used for the conveyance of sewage, industrial wastes, and storm water and for the construction of culverts.1.2 This specification is the SI companion to Specification C655; therefore, no inch-pound equivalents are presented in this specification. Reinforced concrete pipe that conform to the requirements of C655 are acceptable under this Specification C655M unless prohibited by the Owner.NOTE 1: Experience has shown that the successful performance of this product depends upon the proper selection of the pipe strength, the type of bedding and backfill, the care that the installation conforms to the construction specifications, and provision for adequate inspection at the construction site. This specification does not include requirements for bedding, backfill, the relationship between field load conditions and the strength designation of pipe, or durability under unusual environmental conditions. These requirements should be included in the project specification.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
94 条记录,每页 15 条,当前第 1 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页