微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 During the process of calibration of a groundwater flow model, each simulation is compared to site-specific information to ascertain the success of previous calibration efforts and to identify potentially beneficial directions for further calibration efforts. Procedures described herein provide guidance for making comparisons between groundwater flow model simulations and measured field data.5.2 This guide is not meant to be an inflexible description of techniques comparing simulations with measured data; other techniques may be applied as appropriate and, after due consideration, some of the techniques herein may be omitted, altered, or enhanced.1.1 This guide covers techniques that should be used to compare the results of groundwater flow model simulations to measured field data as a part of the process of calibrating a groundwater model. This comparison produces quantitative and qualitative measures of the degree of correspondence between the simulation and site-specific information related to the physical hydrogeologic system.1.2 During the process of calibration of a groundwater flow model, each simulation is compared to site-specific information such as measured water levels or flow rates. The degree of correspondence between the simulation and the physical hydrogeologic system can then be compared to that for previous simulations to ascertain the success of previous calibration efforts and to identify potentially beneficial directions for further calibration efforts.1.3 By necessity, all knowledge of a site is derived from observations. This guide does not address the adequacy of any set of observations for characterizing a site.1.4 This guide does not establish criteria for successful calibration, nor does it describe techniques for establishing such criteria, nor does it describe techniques for achieving successful calibration.1.5 This guide is written for comparing the results of numerical groundwater flow models with observed site-specific information. However, these techniques could be applied to other types of groundwater related models, such as analytical models, multiphase flow models, noncontinuum (karst or fracture flow) models, or mass transport models.1.6 This guide is one of a series of guides on groundwater modeling codes (software) and their applications.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.8 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Information concerning the reaction model aids in the selection of the appropriate method (and test method) for evaluation of kinetic parameters. nth order reaction may be treated by isoconversion methods such as Test Methods E698 and E2890. Autocatalytic reactions are treated by Test Methods E2070.5.2 This practice may be used in research, forensic analysis, trouble shooting, product evaluation, and hazard potential evaluation.1.1 This practice describes a procedure for determining the “model” of an exothermic reaction using differential scanning calorimetry. The procedure is typically performed on 1 mg to 3 mg specimen sizes over the temperature range from ambient to 600 °C.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Biofilm characteristics such as thickness, matrix architecture, and population are dependent on factors such as shear and nutrient availability and composition. Additionally, sporulation can occur within biofilms, including those formed by Bacillus subtilis.5 The purpose of this test method is to define the parameters to grow and enumerate a B. subtilis biofilm comprised of vegetative cells and spores embedded in extracellular polymeric substance (EPS). This type of biofilm could provide a greater challenge to antimicrobials than vegetative biofilm or spores alone. The biofilm generated using this method is suitable for efficacy testing of antimicrobials.1.1 This test method specifies the operational parameters required to grow and quantify a Bacillus subtilis biofilm comprised of vegetative cells and endospores (spores) using the colony biofilm method (CBM).2,3 The resulting biofilm is representative of static environments that can develop a sporulating biofilm rather than being representative of one particular environment.1.2 This test method utilizes a modified CBM to grow the biofilm. The CBM uses a semipermeable membrane on an agar plate as the biofilm growth surface and nutrient source.2,3 In this test method, membranes are inoculated and incubated for a total of 8 days to promote sporulation within the biofilm.1.3 This test method describes how to sample and analyze the biofilm for vegetative cells and spores. Biofilm population is expressed as total colony forming units (CFU) and spores per membrane.1.4 Basic microbiology training is required to perform this test method.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Spinal implants are generally composed of several components which, when connected together, form a spinal implant assembly. Spinal implant assemblies are designed to provide some stability to the spine while arthrodesis takes place. These test methods outline standard materials and methods for the evaluation of different spinal implant assemblies so that comparison between different designs may be facilitated.5.2 These test methods are used to quantify the static and dynamic mechanical characteristics of different designs of spinal implant assemblies. The mechanical tests are conducted in vitro using simplified load schemes and do not attempt to mimic the complex loads of the spine.5.3 The loads applied to the spinal implant assemblies in vivo will, in general, differ from the loading configurations used in these test methods. The results obtained here cannot be used directly to predict in-vivo performance. The results can be used to compare different component designs in terms of the relative mechanical parameters.5.4 Fatigue testing in a simulated body fluid or saline may cause fretting, corrosion, or lubricate the interconnections and thereby affect the relative performance of tested devices. This test should be initially performed dry (ambient room conditions) for consistency. The effect of environment may be significant. Repeating all or part of these test methods in simulated body fluid, saline (9 g NaCl per 1000 mL water), a saline drip, water, or a lubricant should be considered. The maximum recommended frequency for this type of cyclic testing should be 5 Hz.5.5 The location of the longitudinal elements is determined by where the anchors are clinically placed against bony structures. The perpendicular distance to the load direction (block moment arm) between the axis of a hinge pin and the anchor’s attachment points to a UHMWPE block is independent of anchor type. The distance between the anchor’s attachment point to the UHMWPE block and the center of the longitudinal element is a function of the interface design between the screw, hook, wire, cable, and so forth, and the rod, plate, and so forth.5.6 During static torsion testing, the rotation direction (clockwise or counter clockwise) may have an impact on the results.1.1 These test methods cover the materials and methods for the static and fatigue testing of spinal implant assemblies in a vertebrectomy model. The test materials for most combinations of spinal implant components can be specific, depending on the intended spinal location and intended method of application to the spine.1.2 These test methods are intended to provide a basis for the mechanical comparison among past, present, and future spinal implant assemblies. They allow comparison of spinal implant constructs with different intended spinal locations and methods of application to the spine. These test methods are not intended to define levels of performance, since sufficient knowledge is not available to predict the consequences of the use of a particular device.1.3 These test methods set out guidelines for load types and methods of applying loads. Methods for three static load types and one fatigue test are defined for the comparative evaluation of spinal implant assemblies.1.4 These test methods establish guidelines for measuring displacements, determining the yield load, and evaluating the stiffness and strength of the spinal implant assembly.1.5 Some spinal constructs may not be testable in all test configurations.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 This guide covers animal implantation methods and analysis of bone void fillers to determine whether a material or substance leads to lumbar intertransverse process spinal fusion, as defined by its ability to cause bone to form in vivo.1.1 Historically, the single-level rabbit posterolateral, or intertransverse, lumbar spine fusion model was developed and reported on by Dr. Scott Boden, et. al. (Emory Spine Center for Orthopedics) and the model has been proposed as a non-clinical model which may be used to replicate clinically-relevant fusion rates for iliac crest autograft in the posterolateral spine (1, 2).2 This model is used routinely in submissions to regulatory bodies for the purpose of evaluating the potential efficacy of bone void filler materials as compared to other materials or iliac crest autograft to effect spinal posterolateral fusion. The use of this standard’s recommendations as part of a regulatory submission does not provide any guarantee of regulatory clearance and should be considered as a part of the data provided for regulatory submission.1.2 This guide covers general guidelines to evaluate the effectiveness of products intended to cause and/or promote bone formation in the lumbar intertransverse process spinal fusion model in vivo. This guide is applicable to products that may be composed of one or more of the following components: natural biomaterials (such as demineralized bone), and synthetic biomaterials (such as calcium sulfate, glycerol, and reverse phase polymeric compounds) that act as additives, fillers, and/or excipients (radioprotective agents, preservatives, and/or handling agents). It should not be assumed that products evaluated favorably using this guidance will form bone when used in a clinical setting. The primary purpose of this guide is to facilitate the equitable comparison of bone void fillers and/or autograft extender products in vivo. The purpose of this guide is not to exclude other established methods.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with the use of bone void fillers. It is the responsibility of the user of this standard to establish appropriate safety and health practices involved in the development of said products in accordance with applicable regulatory guidance documents and in implementing this guide to evaluate the bone-forming/promoting capabilities of the product.1.5 This standard does not purport to address the requirements under 21 CFR Part 58 concerning Good Laboratory Practices or international standard counterpart OECD Principles of Good Laboratory Practice (GLP). It is the responsibility of the sponsor of the study to understand the requirements for conduct of animal studies whereby the data may be used to support premarket applications, including requirements for personnel, protocol content, record retention and animal husbandry.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This procedure is able to predict the biodegradability of lubricants within a day without dealing with microorganisms. Excellent correlation is established between the test results and the conventional biodegradation tests (see Test Method D5864 and Test Method D6731).1.1 This test method covers a procedure for predicting biodegradability of lubricants using a bio-kinetic model.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D5981-96(2008) Standard Guide for Calibrating a Groundwater Flow Model Application (Withdrawn 2017) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏
ASTM D5718-13 Standard Guide for Documenting a Groundwater Flow Model Application (Withdrawn 2022) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
44 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页