微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The no flow point of a petroleum product is an index of the lowest temperature of its utility for some applications. Flow characteristics, such as no flow point, can be critical for the proper operation of lubricating systems, fuel systems, and pipeline operations.5.2 Petroleum blending operations require precise measurement of the no flow point.5.3 This test method can determine the temperature of the test specimen with a resolution of 0.1 °C at which either crystals have formed or viscosity has increased sufficiently, or both, to impede flow of the petroleum product.5.4 The pour point of a petroleum product is an index of the lowest temperature of its utility for certain applications. Flow characteristics, like pour point, can be critical for the correct operation of lubricating oil systems, fuel systems, and pipeline operations.5.5 Petroleum blending operations require precise measurement of the pour point.5.6 Pour point results from this test method can be reported at either 1 °C or 3 °C intervals.5.7 This test method yields a pour point in a format similar to Test Method D97/IP15 when the 3 °C interval results are reported.5.8 This test method has better repeatability and reproducibility relative to Test Method D97/IP15 as measured in the 2011 interlaboratory test program (see 13.1.2).1.1 This test method covers the determination of the no flow point and pour point of petroleum products, liquid fuels, biodiesel, and biodiesel blends using an automatic instrument.1.2 The measuring range of the apparatus is from –95 °C to 45 °C, however the precision statements were derived only from samples with no flow point temperatures from –77 °C to +2 °C and samples with pour point in the temperature range of –58 °C to +12 °C.1.3 Pour point results from this test method can be reported at 1 °C or 3 °C intervals.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Material finer than the 75-μm (No. 200) sieve can be separated from larger particles much more efficiently and completely by wet sieving than through the use of dry sieving. Therefore, when accurate determinations of material finer than 75 μm (No. 200) in fine or coarse aggregate are desired, this test method is used on the sample prior to dry sieving in accordance with Test Method C136/C136M. The results of this test method are included in the calculation in Test Method C136/C136M, and the total amount of material finer than 75 μm (No. 200) by washing, plus that obtained by dry sieving the same sample, is reported with the results of Test Method C136/C136M. Usually, the additional amount of material finer than 75 μm (No. 200) obtained in the dry sieving process is a small amount. If it is large, the efficiency of the washing operation should be checked. It could also be an indication of degradation of the aggregate.4.2 Plain water is adequate to separate the material finer than 75 μm (No. 200) from the coarser material with most aggregates. In some cases, the finer material is adhering to the larger particles, such as some clay coatings and coatings on aggregates that have been extracted from bituminous mixtures. In these cases, the fine material will be separated more readily with a wetting agent in the water.1.1 This test method covers the determination of the amount of material finer than a 75-μm (No. 200) sieve in aggregate by washing. Clay particles and other aggregate particles that are dispersed by the wash water, as well as water-soluble materials, will be removed from the aggregate during the test.1.2 Two procedures are included, one using only water for the washing operation, and the other including a wetting agent to assist the loosening of the material finer than the 75-μm (No. 200) sieve from the coarser material. Unless otherwise specified, Procedure A (water only) shall be used.1.3 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.NOTE 1: Sieve size is identified by its standard designation in Specification E11. The alternative designation given in parentheses is for information only and does not represent a different standard sieve size.1.4 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The measurement of total moisture is required to determine whether coal meets commercial or environmental specifications, or both. Within the limitations prescribed in the scope, this practice describes a procedure for determination of total moisture that requires less time than the procedures described in Test Method D3302/D3302M.1.1 This practice covers a single-stage procedure for the determination of total moisture less than 15 % in coal reduced to 2.36 mm [No. 8 sieve] topsize. This practice is for determination of total moisture only. Materials subjected to this test shall not be used in the determination of other test parameters. It is recognized that the conditions of the test can increase the potential for significant oxidation effects on some coals. If the oxidation potential is of concern, the use of this single-stage method shall involve prior agreement between the parties involved. This practice shall not be construed as the referee standard practice for total moisture. For referee purposes, users of this practice are referred to Test Method D3302/D3302M for moisture determination methods which are not as susceptible to oxidation effects.1.2 Statistical analysis of data from several sources indicates that at a 95 % confidence level, there is statistically no difference between the mean value of the results obtained by Practice D2961/D2961M and Test Method D3302/D3302M (that is, no bias is detected between the two methods at the 95 % confidence level) for moisture levels between 1.4 % and 15.8 %. These two standards were not compared in this study for some ranks of coal including lignite and anthracite.21.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D711-23 Standard Test Method for No-Pick-Up Time of Pavement Markings Active 发布日期 :  1970-01-01 实施日期 : 

3.1 This test method serves as a laboratory control test. Types of pavement markings that can be tested with this method are waterborne traffic paint, solvent borne traffic paint, and some two component 100 % solids liquid pavement markings, such as epoxy and modified epoxy pavement markings. If wet film thickness, temperature, and humidity are controlled within the tolerances specified herein, this method can be useful for relative testing of pavement markings and potentially for qualification of pavement markings for field application in approved specifications. For improved repeatability and meaningful comparison of pavement markings samples being tested, consistent air flow over the pavement marking films during testing is important. The buyer and seller should agree upon the air flow conditions, whether it be static or carefully regulated air flow (see 4.6.1 and 4.6.2). Because of the many variables operative in the field application of pavement markings (for example, wet film thickness, air temperature, humidity, wind speed, pavement type (asphalt or concrete), film profile over pavement, pavement temperature, pavement porosity, pavement moisture content, and the presence or absence of direct sunlight during striping), a direct correlation between the results of this test and field applications is difficult to obtain. However, relative field performance can be predicted using this method if the testing protocol is adhered to. For testing of two component 100 % solids liquid pavement markings an application of drop on retroreflective optics are typically applied at a specified rate to the markings prior to testing. For these types of pavement markings the regulation of air flow is not necessary due to the drying mechanics of the product.1.1 This test method covers a laboratory procedure for determining the no-pick-up time of pavement markings. The method uses a wheel consisting of a metal cylinder with rubber O-rings. The wheel is rolled down a ramp over a freshly applied pavement marking film repeatedly until there is no transfer of the marking material to the rubber rings. The elapsed time from pavement marking film application to point of no marking material transfer is the no-pick-up time. Key variables to be controlled during testing are wet film thickness, temperature, humidity, air flow, and use of retroreflective optics. This standard provides three options for the testing of the no-pick-up time for pavement markings. The first option, Method A, specifies controls for temperature, humidity, and air flow during testing; a second option, Method B, specifies controls for temperature and humidity during testing, and a third option, Method C, provides guidance for performing this with a drop on application of retroreflective optics such as glass beads, Waterborne and Solvent Borne pavement markings are typically tested using Procedure A or Procedure B, without the application of drop on retroreflective optics. Pavement markings that are two component 100 % solids are typically tested using Method C.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides data for assessing compliance where specifications limit the amount of material retained when sieved on a 45-µm (No. 325) sieve.1.1 This test method covers the determination of the fineness of hydraulic cement by means of air jet sieving using a 45-µm (No. 325) sieve by Air Jet sieving.1.2 The values stated in SI units are regarded as the standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

3.1 The reference immersion oils described in this practice are required for the development of oil-resistant rubber compounds for use in environments where contact with petroleum-based solvents and oils is encountered. Tests for tensile strength, percent elongation at break, hardness, and percent volume swell are performed after a specified immersion time period (at a specified temperature) in the evaluation of oil-resistant rubbers. The results of such testing by rubber product manufacturers and their customers are used to develop oil-resistant rubbers or compounds, or both.3.2 Testing with ASTM Oils No. 1, No. 2, and No. 3 is used to verify compliance with purchase specifications which reference the oil-resistant classes of rubbers and elastomers listed in Table 6 of Classification D2000. These oils are also used in comparative performance evaluation testing of O-rings and O-ring compounds as cited in Test Methods D1414. The use of these reference oils is required for the development and selection of oil-resistant rubber compounds having acceptable or optimum performance characteristics, or both.1.1 This practice covers three immersion oils to be used as replacements for ASTM No. 1, No. 2, and No. 3 immersion oils as called for in Test Method D471. The immersion oils will be designated as IRM 901 as a replacement for ASTM No. 1 oil, IRM 902 as a replacement for ASTM No. 2 oil, and IRM 903 as a replacement for ASTM No. 3 oil. The new reference oils have been developed under a new Committee D11 policy on reference materials (see Practice D4678 for background on the new policy and procedures).1.2 The oils, IRM 901, IRM 902, and IRM 903, are similar but not fully equivalent to ASTM No.1, ASTM No. 2, and ASTM No. 3 oil, respectively. Refer to Table 1 for a description of the typical properties and specifications for these oils.1.3 ASTM No. 5 Oil was accepted into Specification D5900 as an industry reference material in 2010 and designated as IRM 905. The composition, and properties of this immersion oil were not changed and the data in Table 1 remains current. It was listed among the IRM immersion oils in Test Method D471 in 2010.1.4 This practice gives the necessary background and details on the changeover from the previous oils to the new oils. See Annex A1 for additional information on the commercial oils selected to replace ASTM No. 2 and No. 3 oil and the test program conducted for this selection process. The changeover from ASTM to IRM oils is proposed in two steps:1.4.1 Step 1—A transition phase that makes use of the Equivalent Volume Swell (EVS) for each of the two replacement oils. EVS(902) is the ASTM No. 2 percent volume swell value calculated from the measured percent volume swell value using IRM 902 as the immersion liquid. A similar calculation can be used to calculate the analogous EVS(903) and EVS(903) values. The EVS value is obtained as a correction of the measured IRM 901, 902, or 903 percent volume swell value. The EVS values may be used to determine if volume swell specifications are met when the specifications are expressed in terms of ASTM No. 1, No. 2, or No. 3 limits, and1.4.2 Step 2—A longer term policy change or conversion of specifications from ASTM No. 1, No. 2, and No. 3 values to IRM 901, 902, and 903 values.1.5 The EVS values are calculated on the basis of “correction equations” derived from one of two sources.1.5.1 Correction equations derived from the results of the comprehensive evaluation program conducted to select each of the two replacement oils from a group of three candidate oils for ASTM No. 2 and No. 3 oils. This program is described in Annex A1.1.5.2 Correction equations derived from in-house customized or specific testing programs to make direct comparisons of the volume swell (and other important properties) of the IRM and ASTM oils. These programs should be conducted in each laboratory of those organizations that engage in producer-user specification testing for rubber immersion performance.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended to be used for compliance with compositional specifications for particle size distribution. It is assumed that all who use this procedure will be trained analysts capable of performing common laboratory practices skillfully and safely. It is expected that work will be performed in a properly equipped laboratory and that proper waste disposal procedures will be followed. Follow appropriate quality control practices such as those described in Guide E882.1.1 This test method covers the determination of the particle size distribution by screen analysis of metal-bearing ores and related materials at 4.75 mm (No. 4) sieve and coarser.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D711-23 Standard Test Method for No-Pick-Up Time of Pavement Markings Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
30 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页