微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

From these tests the relative expansive potential of soil-lime mixtures containing varying amounts of lime can be evaluated. From such an evaluation, the amount of lime required to reduce expansion to acceptable levels can be determined. The data can then be used for the design and specification requirements for subgrades and structural fills where expansive soils are encountered and it is desired to give a certain degree of expansion-shrinkage control to structure foundations and road subgrades. The tests will also show if the specific soils are amenable to lime stabilization.Note 2—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These test methods provide procedures for conducting expansion, shrinkage, and uplift pressure tests on compacted soil-lime mixtures and can be used to determine the lime content required to achieve desired control of volume changes caused by increases or decreases of moisture.1.2 The tests can be used to determine (a) the magnitude of volume changes under varying load conditions, (b) the rate of volume change, and (c) the magnitude of pressure change as moisture changes of the soil-lime mixture take place. The permeability of soil-lime mixture can also, if desired, be determined at the various load conditions.Note 1—Changes in field conditions can have major effects on the expansion and shrinkage characteristics of expansive soils. Therefore, to the greatest extent possible, initial and anticipated future field conditions should be duplicated, particularly with respect to moisture and density.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, D37401.3.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Information concerning magnitude of compression and rate-of-consolidation of soil is essential in the design of earth structures and earth supported structures. The results of this test method may be used to analyze or estimate one-dimensional settlements, rates of settlement associated with the dissipation of excess pore-water pressure, and rates of fluid transport due to hydraulic gradients. This test method does not provide information concerning the rate of secondary compression.5.2 Strain Rate Effects: 5.2.1 It is recognized that the stress-strain results of consolidation tests are strain rate dependent. Strain rates are limited in this test method by specification of the acceptable magnitudes of the base excess pressure ratio during the loading phase. This specification provides comparable results to the 100 % consolidation (end of primary) compression behavior obtained using Test Method D2435.5.2.2 Field strain rates vary greatly with time, depth below the loaded area, and radial distance from the loaded area. Field strain rates during consolidation processes are generally much slower than laboratory strain rates and cannot be accurately determined or predicted. For these reasons, it is not practical to replicate the field strain rates with the laboratory test strain rate.5.3 Temperature Effects: 5.3.1 Temperature affects the rate parameters such as hydraulic conductivity and the coefficient of consolidation. The primary cause of temperature effects is due to the changes in pore fluid viscosity, but soil sensitivity may also be important. This test method provides results under room temperature conditions, corrections may be required to account for specific field conditions. Such corrections are beyond the scope of this test method. Special accommodation may be made to replicate field temperature conditions and still be in conformance with this test method.5.4 Saturation Effects: 5.4.1 This test method may not be used to measure the properties of partially saturated soils because the method requires the material to be back pressure saturated prior to consolidation.5.5 Test Interpretation Assumptions—The equations used in this test method are based on the following assumptions:5.5.1 The soil is saturated.5.5.2 The soil is homogeneous.5.5.3 The compressibility of the soil particles and water is negligible.5.5.4 Flow of pore water occurs only in the vertical direction.5.5.5 Darcy's law for flow through porous media applies.5.5.6 The ratio of soil hydraulic conductivity to compressibility is constant throughout the specimen during the time interval between individual reading sets.5.5.7 The compressibility of the base excess pressure measurement system is negligible compared to that of the soil.5.6 Theoretical Solutions: 5.6.1 Solutions for constant rate of strain consolidation are available for both linear and nonlinear soil models.5.6.1.1 The linear model assumes that the soil has a constant coefficient of volume compressibility (mv). These equations are presented in 13.4.5.6.1.2 The nonlinear model assumes that the soil has a constant compression index (Cc). These equations are presented in Appendix X1.NOTE 2: The base excess pressure measured at the boundary of the specimen is assumed equal to the maximum excess pore-water pressure in the specimen. The distribution of excess pore-water pressure throughout the specimen is unknown. Each model predicts a different distribution. As the magnitude of the base excess pressure increases, the difference between the two model predictions increases. At a base excess pressure ratio of 15 %, the difference in the average effective stress calculation between the two models is about 0.3 %.5.6.2 The equations for the linear case are used for this test method. This test method limits the time interval between readings and the maximum base excess pressure ratio to values that yield similar results when using either theory. However, it is more precise to use the model that most closely matches the shape to the compression curve.5.6.3 The nonlinear equations are presented in Appendix X1 and their use is not considered a non-conformance with this test method.5.6.4 The equations used in this test method apply only to steady state conditions. The transient strain distribution at the start of a loading or unloading phase is insignificant after the steady state factor (F) exceeds 0.4. Data corresponding to lower steady state factors are not used in this test method.5.7 This test method may be used to measure the compression behavior of free draining soils. For such materials, the base excess pressure will be zero and it will not be possible to compute the coefficient of consolidation or the hydraulic conductivity. In this case, the average effective axial stress is equal to the total axial stress and the results are independent of model.5.8 The procedures presented in this test method assume a high permeability porous disk is used in the base pressure measurement system. Use of a low permeability porous disk or high-air entry (>1 bar) disk will require modification of the equipment specifications and procedures. These modifications are beyond the scope of this test method and are not considered a non-conformance.NOTE 3: The quality of the results produced by application of this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method is for the determination of the magnitude and rate-of-consolidation of saturated cohesive soils using continuous controlled-strain axial compression. The specimen is restrained laterally and drained axially to one surface. The axial force and base excess pressure are measured during the deformation process. Controlled strain compression is typically referred to as constant rate-of-strain (CRS) testing.1.2 This test method provides for the calculation of total and effective axial stresses, and axial strain from the measurement of axial force, axial deformation, chamber pressure, and base excess pressure. The effective stress is computed using steady state equations.1.3 This test method provides for the calculation of the coefficient of consolidation and the hydraulic conductivity throughout the loading process. These values are also based on steady state equations.1.4 This test method makes use of steady state equations resulting from a theory formulated under particular assumptions. Subsection 5.5 presents these assumptions.1.5 The behavior of cohesive soils is strain rate dependent and hence the results of a CRS test are sensitive to the imposed rate of strain. This test method imposes limits on the strain rate to provide comparable results to the incremental consolidation test (Test Method D2435).1.6 The determination of the rate and magnitude of consolidation of soil when it is subjected to incremental loading is covered by Test Method D2435.1.7 This test method applies to intact (Group C and Group D of Practice D4220), remolded, or laboratory reconstituted samples.1.8 This test method is most often used for materials of relatively low hydraulic conductivity that generate measurable excess base pressures. It may be used to measure the compression behavior of essentially free draining soils but will not provide a measure of the hydraulic conductivity or coefficient of consolidation.1.9 All recorded and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026, unless superseded by this test method. The significant digits specified throughout this standard are based on the assumption that data will be collected over an axial stress range from 1% of the maximum stress to the maximum stress value.1.9.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.9.2 Measurements made to more significant digits or better sensitivity than specified in this standard shall not be regarded a non-conformance with this standard.1.10 Units—The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.10.1 The gravitational system is used when working with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F = ma) calculations are involved.1.10.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as non-conformance with this standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice sets forth the acceptable installation and service use of solar space heating systems for one- and two-family dwellings to help ensure adequate performance, safety, and consumer satisfaction. This practice, however, does not apply to Rankine cycle, heat pump, or high pressure vapor systems, and is not intended to abridge safety or health requirements. Specifications are provided for the following system components: collector subsystems; thermal storage devices; controls and safety devices; piping, ducting, and ancillary equipment; electrical wiring; and auxiliary (nonsolar) space-heating equipment.1.1 This practice covers solar space heating systems for one- and two-family dwellings. It sets forth acceptable installation and service practices to help ensure adequate performance, safety, and consumer satisfaction.1.2 This practice is intended to describe acceptable practices for space heating systems in new and existing dwellings and shall not be construed as the optimization of good practices.1.3 This practice does not apply to Rankine cycle, heat pump, or high pressure vapor systems.1.4 This practice is not intended to abridge safety or health requirements. All systems shall be installed in accordance with local codes and ordinances.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (For specific safety precautions, see Section 6).1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The most general method for obtaining CIE tristimulus values or, through their transformation, other coordinates for describing the colors of fluorescent objects is by the use of spectrometric data obtained under defined and controlled conditions of illumination and viewing. This practice describes the instrumental measurement requirements, calibration procedures, and material standards needed for measuring the total spectral radiance factors of fluorescent specimens illuminated by simulated daylight approximating CIE D65 and calculating total tristimulus values and total chromaticity coordinates for either the CIE 1931 or 1964 observers.5.2 The precise colorimetry of fluorescent specimens requires the spectral distribution of the instrument light source illuminating the specimen closely duplicate the colorimetric illuminant used for the calculation of tristimulus values, which is CIE D65 in this practice. The fundamental basis for this requirement follows from the defining property of a fluorescent specimen: instantaneous light emission resulting from electronic excitation by absorption of radiant energy (η) where the wavelengths of emission (λ) are as a rule longer than the excitation wavelengths (1).7 For a fluorescent specimen, the total spectral radiance factors used to calculate tristimulus values are the sum of two components – an ordinary reflectance factor, β(λ)S, and a fluorescence factor, β(η,λ)F : β(λ) = β(λ)S  + β(η,λ)F. Ordinary spectral reflectance factors are solely a function of the specimen's reflected radiance efficiency at the viewing wavelength (λ) and independent of the spectral distribution of the illumination. The values of the spectral fluorescent radiance factors at the viewing wavelength (λ) vary directly with the absolute spectral distribution of illumination within the excitation range (η), and consequently so will the total spectral radiance factors and derived colorimetric values. One-monochromator colorimetric spectrometers used in this practice are generally designed for the color measurement of ordinary (non-fluorescent) specimens and the precision with which they can measure the color of fluorescent specimens is directly dependent on how well the instrument illumination simulates CIE D65.5.3 CIE D65 is a virtual illuminant that numerically defines a standardized spectral illumination distribution for daylight and not a physical light source (2). There is no CIE recommendation for a standard source corresponding to CIE D65 nor is there a standardized method for rating the quality (or adequacy) of an instrument's simulation of CIE D65 for the general instrumental colorimetry of fluorescent specimens. The requirement that the instrument simulation of CIE D65 shall have a rating not worse than BB (CIELAB) as determined by the method of CIE Publication 51 has often been referenced. However, the method of CIE 51 is only suitable for ultraviolet-excited specimens evaluated for the CIE 1964 (10°) observer. The methods described in CIE 51 were developed for UV activated fluorescent whites and have not been proven to be applicable to visible-activated fluorescent specimens.NOTE 1: Aging of the instrument lamp will occur with normal usage resulting in changes in the spectral distribution and intensity of the illumination on the specimen over time. Measurement of the spectral distribution of the illumination at the sample port and evaluation of the adequacy of the CIE D65 simulation at regular intervals are recommended.5.4 Differences in the absolute spectral irradiance distribution on the specimen between instrument models can produce significant variation in the measured color values of fluorescent specimens and result in poor reproducibility (3). In order to reproduce adequately the spectral irradiance on the specimen required for maximum measurement reproducibility, it may be necessary for a single model of instrument to be specified for use by both buyer and seller.5.5 This practice is primarily for the instrumental color measurement of chromatic fluorescent specimens. While use of this practice for the color measurement of fluorescent whites is not precluded, other standards are more commonly used for measurement of these types of specimens (4, 5, 6) (see Test Methods D985, ISO 11475, ISO 2469, and TAPPI T 571).5.6 For geometrically sensitive fluorescent specimens angular tolerances on the axes and the angular aperture sizes must be well defined by the user to ensure adequate repeatability and reproducibility. Significant variation in measurement results for engineered surfaces and optical materials, for example retroreflective sheeting, can result from differences in the absolute axis angles of illumination and viewing and absolute size of the apertures between instruments (7). In order to replicate the measurement geometry, absolute angles and angular tolerances between instruments that is required for maximum measurement reproducibility, it may be necessary for a single model of instrument to be specified for use by both buyer and seller.NOTE 2: To ensure inter-instrument agreement in the measurement of specimens with intermediate gloss, for formulation, or retroreflective specimens, tight geometric tolerances are required of the instrument axis angles and the instrument aperture angles.5.7 Bidirectional (45:0 or 0:45) geometry is recommended for this practice.5.7.1 Hemispherical geometry using an integrating sphere is not recommended because of the spectral sphere error resulting from radiation emitted by the fluorescent specimen reflecting off the sphere wall and re-illuminating the specimen, thereby changing the spectral illuminance distribution on the specimen from that of the original instrument source (8).NOTE 3: The spectral sphere error associated with hemispherical geometry decreases as the ratio of the internal area of the sphere to the measurement area increases. When the spectral sphere error is negligible, results obtained using hemispherical geometry may for some specimens under specific measurement conditions approach those obtained using 45:0 geometry (9).5.8 This practice provides procedures for selecting the operating parameters of spectrometers used for providing data of the desired precision. It also provides for instrument calibration by means of artifact standards and selection of suitable specimens for obtaining precision in the measurements.5.9 Bispectral colorimetry using a bidirectional optical measuring system with a 45:0 or 0:45 illuminating and viewing geometry should be used when a high level of repeatability and reproducibility are required. The bispectral, or two-monochromator, method is the definitive method for the determination of the general radiation-transfer properties of fluorescent specimens. The bispectral method is accepted as the referee procedure for obtaining illuminant-independent photometric data on a fluorescent specimen that can be used to calculate its color for any desired illuminant and observer. The advantage of the bispectral method is that it avoids the inaccuracies associated with source simulation and various methods of approximation (10, 11) (see Practices E2152, E2153, and Test Method E2301).1.1 This practice applies to the instrumental color measurement of fluorescent specimens excited by near ultraviolet and visible radiation that results in fluorescent emission within the visible range. It is not intended for other types of photoluminescent materials such as phosphorescent, chemiluminescent, or electroluminescent, nor is this practice intended for the measurement of the fluorescent properties for chemical analysis.1.2 This practice describes the instrumental measurement requirements, calibration procedures, and material standards needed for the color measurement of fluorescent specimens when illuminated by simulated daylight approximating CIE Standard Illuminant D65 (CIE D65).1.3 This practice is limited in scope to colorimetric spectrometers providing continuous broadband polychromatic illumination of the specimen and employing only a viewing monochromator for analyzing the radiation leaving the specimen.1.4 This practice can be used for calculating total tristimulus values and total chromaticity coordinates for fluorescent colors in the CIE Color System for either the CIE 1931 Standard Colorimetric Observer or the CIE 1964 Supplementary Standard Colorimetric Observer.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers a rigid wall, one-side expandable shelter constructed of aluminum-faced, nonmetallic honeycomb sandwich panels. Design and construction requirements of the expandable shelter shall conform to the requirements on the drawings, all subsidiary drawings and parts lists. Also, design and construction requirements for panels, inserts, payload, corner fittings, exterior lighting, and shelter electrical systems shall be met. The following test shall be conducted for each panel: electrical continuity test, water leakage test, performance test, paint adhesion test, packaging examination, thermal shock test, panel interchange test, insert proof load test, floor load test, roof load test, door load test, step test, airtightness test, low temperature test, high temperature test, humidity test, aging test, blackout test, panel watertightness test, insert working load test, rail transportability test, impact resistance test, drop test, towing test, fluorescent light temperature test, solar load test, operational test, lifting test, six high stacking test, longitudinal restraint test, racking test, lashing test, end wall strength test, sidewall strength test, lifting from fork lift pockets test, heat transfer test, panel delamination test, thickness test, and electrical system test.1.1 This specification covers a rigid wall, one-side expandable shelter constructed of aluminum-faced, nonmetallic honeycomb sandwich panels, and meeting the International Organization for Standardization (ISO) Cargo Container specification in the transport mode. Nominal dimensions when closed (container mode) are: height 8 ft, width 8 ft, and length 20 ft (2.4 by 2.4 by 6.1 m) Approximate dimensions, when expanded (shelter mode) are: height 8 ft, width 15 ft, and length 20 ft (2.4 by 4.6 by 6.1 m).1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following precautionary statement pertains to the test method portion only. Section 7, of this specification;  This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determines the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This test method details the standard procedures for the determination of the bond and cohesion of one-part elastomeric solvent release-type sealants after high- and low-temperature aging. The materials and apparatuses needed for this test procedure are an extension machine, a forced-draft type oven, a convection type oven, a freezer chest or cold box, mortar blocks, glass plates, aluminum alloy plates, and polyethylene spacer bars. This test method also requires the use of the following reagents: acetone or methyl ethyl ketone solvents; detergent solution; and distilled water.1.1 This test method determines the bond and cohesion of one-part, elastomeric, solvent release-type sealants after high- and low-temperature aging.1.2 The subcommittee with jurisdiction is not aware of any similar ISO standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Currently there is no ISO standard similar to this test method.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification establishes nationally recognized construction, performance and marking standards for portable emergency fuel containers intended for attended transport of fuel and for one time use by consumers. It identifies the requirements the PEFCs need to meet, as well as the markings that need to be indicated on the containers. It then indicates the test methods that ensure the quality of the containers, including the stability test, the drop test, and the vent test.1.1 This specification establishes nationally recognized construction, performance, and marking standards for portable emergency fuel containers intended for attended transport of fuel and for one time use by consumers. This specification is not for containers intended for unattended storage of fuel.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of sewer service laterals and its connection to the main through the use of a resin-impregnated tube installed within an existing sewer lateral. As for any practice, modifications may be required for specific job conditions.1.1 This practice covers requirements and test methods for the reconstruction of a sewer service lateral pipe having an inner diameter of 3 to 12 in. (7.6 to 30.5 cm) and its connection to the main pipe having an inner diameter of 6 to 24 in. (15.2 to 61.0 cm) and up the lateral a maximum of 150 ft (46 m) without excavation. The lateral pipe is accessed remotely from the main pipe and from a lateral access point. This will be accomplished by the installation of a resin impregnated one-piece main and lateral cured-in-place lining (MLCIPL) by means of air inflation and inversion. The MLCIPL is pressed against the host pipe by pressurizing a bladder and is held in place until the thermoset resins have cured. When cured, the MLCIPL shall be a continuous, one piece, tight fitting, corrosion resistant lining extending over a predetermined length of the lateral pipe and the adjacent section of the main pipe, providing a verifiable non-leaking structural connection and seal.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 There is no similar or equivalent ISO Standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The data from the consolidation test are used to estimate the magnitude and rate of both differential and total settlement of a structure or earthfill. Estimates of this type are of key importance in the design of engineered structures and the evaluation of their performance.5.2 The test results can be greatly affected by sample disturbance. Careful selection and preparation of test specimens is required to reduce the potential of disturbance effects.NOTE 3: Notwithstanding the statement on precision and bias contained in this standard, the precision of this test method is dependent on the competence of the personnel performing the test and suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 generally are considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not assure reliable testing. Reliable testing depends on many factors, and Practice D3740 provides a means of evaluation some of these factors.5.3 Consolidation test results are dependent on the magnitude of the load increments. Traditionally, the axial stress is doubled for each increment resulting in a load increment ratio of 1. For intact samples, this loading procedure has provided data from which estimates of the preconsolidation stress, using established interpretation techniques, compare favorably with field observations. Other loading schedules may be used to model particular field conditions or meet special requirements. For example, it may be desirable to inundate and load the specimen in accordance with the wetting or loading pattern expected in the field in order to best evaluate the response. Load increment ratios of less than 1 may be desirable for soils that are highly sensitive or whose response is highly dependent on strain rate.5.4 The interpretation method specified by these test methods to estimate the preconsolidation stress provides a simple technique to verify that one set of time readings are taken after the preconsolidation stress and that the specimen is loaded to a sufficiently high stress level. Several other evaluation techniques exist and may yield different estimates of the preconsolidation stress. Alternative techniques to estimate the preconsolidation stress may be used when agreed to by the requesting agency and still be in conformance with these test methods.5.5 Consolidation test results are dependent upon the duration of each load increment. Traditionally, the load duration is the same for each increment and equal to 24 h. For some soils, the rate of consolidation is such that complete consolidation (dissipation of excess pore pressure) will require more than 24 h. The apparatus in general use does not have provisions for formal verification of pore pressure dissipation. It is necessary to use an interpretation technique which indirectly determines that consolidation is essentially complete. These test methods specify procedures for two techniques (Method A and Method B), however alternative techniques may be used when agreed to by the requesting agency and still be in conformance with these test methods.5.6 The apparatus in general use for these test methods do not have provisions for verification of saturation. Most intact samples taken from below the water table will be saturated. However, the time rate of deformation is very sensitive to degree of saturation and caution must be exercised regarding estimates for duration of settlements when partially saturated conditions prevail. Inundation of the test specimen does not significantly change the degree of saturation of the test specimen but rather provides boundary water to eliminate negative pore pressure associated with sampling and prevents evaporation during the test. The extent to which partial saturation influences the test results may be a part of the test evaluation and may include application of theoretical models other than conventional consolidation theory. Alternatively, the test may be performed using an apparatus equipped to saturate the specimen.5.7 These test methods use conventional consolidation theory based on Terzaghi's consolidation equation to compute the coefficient of consolidation, cv. The analysis is based upon the following assumptions:5.7.1 The soil is saturated and has homogeneous properties;5.7.2 The flow of pore water is in the vertical direction;5.7.3 The compressibility of soil particles and pore water is negligible compared to the compressibility of the soil skeleton;5.7.4 The stress-strain relationship is linear over the load increment;5.7.5 The ratio of soil permeability to soil compressibility is constant over the load increment; and5.7.6 Darcy's law for flow through porous media applies.1.1 These test methods cover procedures for determining the magnitude and rate of consolidation of soil when it is restrained laterally and drained axially while subjected to incrementally applied controlled-stress loading. Two alternative procedures are provided as follows:1.1.1 Test Method A—This test method is performed with constant load increment duration of 24 h, or multiples thereof. Time-deformation readings are required on a minimum of two load increments. This test method provides only the compression curve of the specimen and the results combine both primary consolidation and secondary compression deformations.1.1.2 Test Method B—Time-deformation readings are required on all load increments. Successive load increments are applied after 100 % primary consolidation is reached, or at constant time increments as described in Test Method A. This test method provides the compression curve with explicit data to account for secondary compression, the coefficient of consolidation for saturated materials, and the rate of secondary compression.NOTE 1: The determination of the rate and magnitude of consolidation of soil when it is subjected to controlled-strain loading is covered by Test Method D4186/D4186M.1.2 These test methods are most commonly performed on saturated intact samples of fine grained soils naturally sedimented in water, however, the basic test procedure is applicable, as well, to specimens of compacted soils and intact samples of soils formed by other processes such as weathering or chemical alteration. Evaluation techniques specified in these test methods assume the pore space is fully saturated and are generally applicable to soils naturally sedimented in water. Tests performed on other unsaturated materials such as compacted and residual (weathered or chemically altered) soils may require special evaluation techniques. In particular, the rate of consolidation (interpretation of the time curves) is only applicable to fully saturated specimens.1.3 It shall be the responsibility of the agency requesting this test to specify the magnitude and sequence of each load increment, including the location of a rebound cycle, if required, and, for Test Method A, the load increments for which time-deformation readings are desired. The required maximum stress level depends on the purpose of the test and must be agreed on with the requesting agency. In the absence of specific instructions, Section 11 provides the default load increment and load duration schedule for a standard test.NOTE 2: Time-deformation readings are required to determine the time for completion of primary consolidation and for evaluating the coefficient of consolidation, cv. Since cv varies with stress level and loading type (loading or unloading), the load increments with timed readings must be selected with specific reference to the individual project. Alternatively, the requesting agency may specify Test Method B wherein the time-deformation readings are taken on all load increments.1.4 These test methods do not address the use of a back pressure to saturate the specimen. Equipment is available to perform consolidation tests using back pressure saturation. The addition of back pressure saturation does not constitute non-conformance to these test methods.1.5 Units—The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5.1 In the engineering profession it is customary practice to use, interchangeably, units representing both mass and force, unless dynamic calculations (F = Ma) are involved. This implicitly combines two separate systems of units, that is, the absolute system and the gravimetric system. It is scientifically undesirable to combine two separate systems within a single standard. This test method has been written using SI units; however, inch-pound conversions are given in the gravimetric system, where the pound (lbf) represents a unit of force (weight). The use of balances or scales recording pounds of mass (lbm), or the recording of density in lb/ft3 should not be regarded as nonconformance with this test method.1.6 Observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.6.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

The results obtained by this test method may serve as a guide in, but not as the sole basis for, predicting the possible performance of the particular glass-fiber-reinforced thermosetting resin laminate in the one-side exposure to the specific environment under evaluation. No attempt has been made to incorporate into the test method all of the factors that may enter into the serviceability of a glass-fiber-reinforced resin structure when subjected to chemical environments.This test method provides for the determination of changes in the physical properties of the test panel and test media during and after the one-side exposure in the test media. Determination of changes include: Barcol hardness, appearance of panel, appearance of test media, flexural properties, and thickness.1.1 This test method is intended for use in the evaluation of the chemical resistance of fiberglass-reinforced thermosetting resins that are subjected to one-side panel exposure to specific environments. It takes into consideration the coldwall effects and radiation losses of heat transfer through the laminate wall.1.2 This test method is supplemental to Practice C 581 and does not supersede it. Note 1 - There is no known ISO equivalent to this standard.This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This practice permits an analyst to compare the general performance of an instrument on any given day with the prior performance of an instrument. This practice is not necessarily meant for comparison of different instruments with each other even if the instruments are of the same type and model. This practice is not meant for comparison of the performance of one instrument operated under differing conditions.1.1 This practice describes two levels of tests to measure the performance of laboratory Fourier transform mid-infrared (FT-MIR) spectrometers equipped with a standard sample holder used for transmission measurements.1.2 This practice is not directly applicable to Fourier transform infrared (FT-IR) spectrometers equipped with various specialized sampling accessories such as flow cells or reflectance optics, nor to Fourier transform near-infrared (FT-NIR) spectrometers, nor to FT-IR spectrometers run in step scan mode.1.2.1 If the specialized sampling accessory can be removed and replaced with a standard transmission sample holder, then this practice can be used. However, the user should recognize that the performance measured may not reflect that which is achieved when the specialized accessory is in use.1.2.2 If the specialized sampling accessory cannot be removed, then it may be possible to employ a modified version of this practice to measure spectrometer performance. The user is referred to Guide E1866 for a discussion of how these tests may be modified.1.2.3 Spectrometer performance tests for FT-NIR spectrometers are described in Practice E1944.1.2.4 Performance tests for dispersive MIR instruments are described in Practice E932.1.2.5 For FT-IR spectrometers run in a step scan mode, variations on this practice and information provided by the instrument vendor should be used.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Informational inch-pound units are provided in 5.4.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is not intended to simulate an actual use condition but it will give some indication of the elastomeric properties or flexibility of a building joint sealant at low temperature. It can serve to differentiate between elastomer-based sealants and sealants based on nonelastic binders that can harden or embrittle on aging and crack or lose adhesion when flexed at low temperature. In addition, it can aid in identifying sealants that have poor flexibility because they are overextended and contain a very low level of elastomeric binder as well as those sealants having binders that will embrittle at low temperature.1.1 This test method covers determination of the low-temperature flexibility and tenacity of one-part, elastomeric, solvent-release type sealants after cyclic high- and low-temperature aging.1.2 The subcommittee with jurisdiction is not aware of any similar ISO standard.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The type and amount of solvent used in these sealants can sometimes give rise to surface bubbling (blistering) problems. The substrate used, whether porous or nonporous, will also have an effect. Although bubbling is often caused by misapplication, this test method is useful in differentiating between a sealant that develops an acceptably smooth surface and one that may have bubbling tendencies.1.1 This test method covers determination of the degree of bubble formation or surface blistering in one-part, elastomeric solvent-release type sealants when exposed to elevated temperatures.1.2 The subcommittee with jurisdiction is not aware of any similar ISO standard.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method will provide guidance for the measurement of the net heat flux to or from a surface location. To determine the radiant energy component the emissivity or absorptivity of the gage surface coating is required and should be matched with the surrounding surface. The potential physical and thermal disruptions of the surface due to the presence of the gage should be minimized and characterized. For the case of convection and low source temperature radiation to or from the surface it is important to consider how the presence of the gage alters the surface heat flux. The desired quantity is usually the heat flux at the surface location without the presence of the gage. 5.1.1 Temperature limitations are determined by the gage material properties and the method of application to the surface. The range of heat flux that can be measured and the time response are limited by the gage design and construction details. Measurements from 10 W/m2 to above 100 kW/m2 are easily obtained with current sensors. Time constants as low as 10 ms are possible, while thicker sensors may have response times greater than 1 s. It is important to choose the sensor style and characteristics to match the range and time response of the required application. 5.2 The measured heat flux is based on one-dimensional analysis with a uniform heat flux over the surface of the gage surface. Because of the thermal disruption caused by the placement of the gage on the surface, this may not be true. Wesley (3) and Baba et al. (4) have analyzed the effect of the gage on the thermal field and heat transfer within the surface substrate and determined that the one-dimensional assumption is valid when: where: ks   =   the thermal conductivity of the substrate material, R   =   the effective radius of the gage, δ   =   the combined thickness, and k   =   the effective thermal conductivity of the gage and adhesive layers. 5.3 Measurements of convective heat flux are particularly sensitive to disturbances of the temperature of the surface. Because the heat transfer coefficient is also affected by any non-uniformities of the surface temperature, the effect of a small temperature change with location is further amplified, as explained by Moffat et al. (2) and Diller (5). Moreover, the smaller the gage surface area, the larger is the effect on the heat-transfer coefficient of any surface temperature non-uniformity. Therefore, surface temperature disruptions caused by the gage should be kept much smaller than the surface to environment temperature difference causing the heat flux. This necessitates a good thermal path between the gage and the surface onto which it is mounted. 5.3.1 Fig. 2 shows a heat-flux gage mounted onto a plate with the surface temperature of the gage of Ts and the surface temperature of the surrounding plate of Tp. The goal is to keep the gage surface temperature as close as possible to the plate temperature to minimize the thermal disruption of the gage. This requires the thermal resistance of the gage and adhesive to be minimized along the thermal pathway from Ts and Tp. FIG. 2 Diagram of an Installed Surface-Mounted Heat-Flux Gage 5.3.2 Another method to avoid the surface temperature disruption problem is to cover the entire surface with the heat-flux gage material. This effectively ensures that the thermal resistance through the gage is matched with that of the surrounding plate. It is important to have independent measures of the substrate surface temperature and the surface temperature of the gage. The gage surface temperature must be used for defining the value of the heat-transfer coefficient. When the gage material does not cover the entire surface, the temperature measurements are needed to ensure that the gage does indeed provide a small thermal disruption. 5.4 The time response of the heat-flux gage can be estimated analytically if the thermal properties of the thermal-resistance layer are well known. The time required for 98 % response to a step input (6) based on a one-dimensional analysis is: where α is the thermal diffusivity of the TRL. Covering or encapsulation layers must also be included in the analysis. Uncertainties in the gage dimensions and properties require a direct experimental verification of the time response. If the gage is designed to absorb radiation, a pulsed laser or optically switched Bragg cell can be used to give rise times of less than 1 μs (7,8). However, a mechanical wheel with slits can be used with a light to give rise times on the order of 1 ms (9), which is generally sufficient. 5.4.1 Because the response of these sensors is close to an exponential rise, a measure of the time constant τ for the sensor can be obtained by matching the experimental response to step changes in heat flux with exponential curves. The value of the step change in imposed heat flux is represented by qss. The resulting time constant characterizes the first-order sensor response. 1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C518 and Practices C1041 and C1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1).2 Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical engineering with measurements ranging form 0.01 to 50 kW/m 2. The gages are usually square or rectangular and vary in size from 1 mm to 10 cm or more on a side. The thicknesses range from 0.05 to 3 mm. 1.3 The values stated in SI units are to be regarded as the standard. The values stated in parentheses are provided for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The wetting-induced swell/collapse strains measured from Test Methods A and B can be used to develop estimates of heave or settlement of a confined soil profile (1-4).4 They can also be used to estimate the magnitudes of the swell pressure (Fig. 3) and the free swell strain (percent swell under a pressure of 1 kPa (20 lbf/ft2)). The load-induced strains after wetting from Test Method C can be used to estimate stress-induced settlement following wetting-induced heave or settlement. Selection of test method, loading, and inundation sequences should, as closely as possible, simulate field conditions because relatively small variations in density and water content, or sequence of loading and wetting can significantly alter the test results (1, 5 and 6).FIG. 3 Stress Versus Wetting-Induced Swell/Collapse Strain, Test Method ANOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depends on several factors; Practice D3740 provides a means of evaluating some of these factors.1.1 This standard covers two laboratory test methods for measuring the magnitude of one-dimensional wetting-induced swell or collapse of unsaturated soils and one method for measuring load-induced compression subsequent to wetting-induced deformation.1.1.1 Test Method A is a procedure for measuring one-dimensional wetting-induced swell or hydrocompression (collapse) of reconstituted specimens simulating field condition of compacted fills. The magnitude of swell pressure (the minimum vertical stress required to prevent swelling), and free swell (percent swell under a pressure of 1 kPa or 20 lbf/ft2) can also be determined from the results of Test Method A.1.1.2 Test Method B is a procedure for measuring one-dimensional wetting-induced swell or collapse deformation of intact specimens obtained from a natural deposit or from an existing compacted fill. The magnitude of swell pressure and free swell can also be determined from the results of Test Method B.1.1.3 Test Method C is a procedure for measuring load-induced strains on a reconstituted or intact specimen after the specimen has undergone wetting-induced swell or collapse deformation.1.2 In Test Method A, a series of reconstituted specimens duplicating compaction condition of the fine fraction of the soil in the field (excluding the oversize particles) are assembled in consolidometer units. Different loads corresponding to different fill depths are applied to different specimens and each specimen is given access to free water until the process of primary swell or collapse is completed (Fig. 1) under a constant vertical total stress (Fig. 2). The resulting swell or collapse deformations are measured. This test method can be referred to as wetting-after-loading tests on multiple reconstituted specimens. The data from these tests can be used to estimate one-dimensional ground surface heave or settlement that can occur due to full wetting after fill construction. In addition, the magnitude of swell pressure and the magnitude of free swell can be interpreted from the test results.FIG. 1 Time-Swell CurveFIG. 2 Deformation Versus Vertical Stress, Test Method A1.3 Test Method B is commonly used for measuring one-dimensional wetting-induced swell or hydrocompression of individual intact samples. This method can be referred to as single-point wetting-after-loading test. The vertical pressure at wetting for the specimen is chosen equal to the vertical in-situ stress (overburden stress plus structural stress, if any) corresponding to the sampling depth. The test result indicates the amount of heave or hydrocompression that can result when the soil at a given fill depth is wetted from the current moisture condition to full inundation condition. If intact specimens from various depths are tested, the swell or collapse strain data can be used to estimate heave or settlement of the ground surface. If the objective of the test is to measure swell pressure for an expansive soil, a series of intact specimens from a given depth zone can be wetted under a range of pressures (similar to Test Method A) and the results interpreted to determine the magnitude of the swell pressure.1.4 Test Method C is for measuring load-induced strains after wetting-induced swell or collapse deformation has occurred. This method can be referred to as loading-after-wetting test. The test can be performed on either intact or reconstituted specimens, and can be on one specimen or a series of specimens. The results would apply to situations where new fill, additional structural loads, or both, are applied to the ground that has previously gone through wetting-induced heave or settlement. The first part of the test is the same as in Test Method A or B. After completion of the swell or collapse under a given vertical load, additional vertical load increments are applied to the specimen in the same manner as in a consolidation test (Test Methods D2435/D2435M) and the load-induced strains are measured.1.5 It shall be the responsibility of the agency requesting this test to specify the magnitude of each load for Test Method A and Test Method B. For Test Method C, the agency requesting the test should specify the magnitude of the stress under which the specimen is wetted, and the magnitudes of the additional stress increments subsequent to wetting.1.6 These test methods do not address the measurement of soil suction and suction-controlled swell-collapse tests. The addition of suction-controlled wetting does not constitute nonconformance to these test methods.1.7 These test methods have a number of limitations and their results can be affected by one or a combination of factors including the effect of significant amounts of oversize particles (in Test Method A), sampling disturbance (in Test Method B) and differences between the degree of wetting in the laboratory test specimens and in the field. For details of these and other limitations, see Section 6.1.8 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. Test results recorded in units other than SI shall not be regarded as nonconformance with this standard. Figures depicting the test results can be either in SI units or in inch-pound units.1.8.1 The converted inch-pound units use the gravitational system of units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The slug unit is not given, unless dynamic (F = ma) calculations are involved.1.8.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.8.3 The terms density and unit weight are often used interchangeably. Density is mass per unit volume whereas unit weight is force per unit volume. In this standard density is given only in SI units. After the density has been determined, the unit weight is calculated in SI or inch-pound units, or both.1.9 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.9.1 The procedures used to specify how data are collected/recorded, or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any consideration for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
25 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页