微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This guide establishes the minimum training criteria for snowmobile operator endorsed personnel.4.2 At no time will this standard supersede any established protocols of international, national, federal, state, tribal, local, or regional governments.4.3 Every person who is identified as a snowmobile operator endorsed individual shall have met the requirements of this guide.4.4 Though this guide establishes only minimum standards, it does not imply that a snowmobile operator endorsed individual is a “trainee,” “probationary,” or other similarly termed member or employee of an agency or organization.4.4.1 The AHJ is responsible for determining the requirements and qualifications for its team member or employee ratings.4.4.2 Nothing in this guide precludes an AHJ from adding additional requirements for its own members or employees.4.5 A person meeting the requirements of this guide does not necessarily possess adequate field skills and knowledge to make mission-critical decisions.4.6 This guide by itself is not a training document. It is an outline of the topics required for training or evaluating snowmobile operator endorsed personnel.4.7 This guide is an outline of the topics required for training or evaluating snowmobile operator endorsed personnel and may be used to assist in the development of a training document or program.4.8 This guide can be used to evaluate a document to determine if its content includes the topics necessary for training individuals to be snowmobile operator endorsed personnel. Likewise, this guide may be used to evaluate an existing training program to see if it meets the requirements in this guide.4.9 The knowledge, skills, and abilities presented in the following sections are not in any particular order and do not represent a training sequence.4.10 This guide does not stand alone and must be used with other ASTM standards to identify the knowledge, skills, and abilities needed for snowmobile operator endorsed personnel to perform safely and effectively.4.11 Snowmobile operator endorsed personnel shall record training by completion of a position task book, compliant with Guide F3068, or with documented field demonstration under qualified supervision.4.11.1 Where proficiency in a skill or ability must be demonstrated, unless stated otherwise it shall be demonstrated for initial qualification, and as often as required by AHJ.4.11.2 Proficiency shall be demonstrated to a qualified evaluator as defined by the AHJ.1.1 This guide establishes the minimum training requirements, including general and field knowledge, skills, and abilities, for personnel who operate snowmobiles as part of their duties.1.2 This guide applies only to snowmobiles as defined in Section 6.1.3 A snowmobile operator’s endorsement alone is not sufficient to indicate that an individual has the knowledge, skills, or abilities to perform any specific duties, including search and rescue operations, other than those defined within this guide.1.4 Snowmobile operator endorsed individuals may, under qualified supervision, perform their normal duties safely and effectively on snowmobiles.1.5 Snowmobile operator endorsed individuals operate on the surface of the land only, including urban or disaster areas that may be isolated or have lost supporting infrastructure.1.6 This guide alone does not define the minimum training requirements for personnel to operate snowmobiles in a mountain or alpine environment or in areas prone to avalanche.1.7 Personnel trained only to this guide are not qualified to operate in leadership positions.1.8 Snowmobile operator endorsed personnel must work under qualified supervision, as deemed appropriate by the authority having jurisdiction (AHJ).1.9 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This standard practice is designed to specify the minimum training and testing required of HFE operators trainees before they obtain a Heat Fusion Equipment Operator Qualification card. It will allow the industry to require the “HFE” operators be trained and qualified to an approved procedure before they can heat fuse PE or PA pipe in the field. The standard practice will bring more competency in the operators and more consistency in the training they receive.1.1 This practice describes criteria for the training, assessment and qualification of heat fusion equipment (HFE) operators in, but not limited to, a field environment in order to establish and maintain competency in the joining of Polyethylene (PE) and Polyamide (PA) piping systems.1.2 This HFE operator training and qualification is applicable to heat fusion joining of PE pipe and fittings to other PE pipe and fittings of related polymer chemistry specified in the heat fusion procedures or standards used. It is also applicable to heat fusion joining of PA pipe and fittings to other PA pipe and fittings of the same polymer chemistry specified in the heat fusion procedures or standards used. The heat fusion between PE pipe and fittings to PA pipe and fittings is NOT allowed.1.3 The HFE operator training and qualification shall be for butt fusion for either PE or PA piping products, using the specific brand and size range of fusion machine to be used by the HFE operator and the heat fusion procedures or standards specified. If the HFE operator trainee requests, the training shall also include saddle and/or socket fusion of PE pipe and fittings of related polymer chemistry specified in the heat fusion procedures or standards used. This standard does not include training on the electro-fusion of these piping products.1.4 The HFE operator qualification shall be for one specific manufacturer’s fusion machine or a size range of that manufacturer’s hydraulic fusion machines or equipment that all operate in the same manner with the same hydraulic design and controls and the same heater and facer design. For smaller pipe sizes (6 in. and smaller), the qualification can be on a specific fusion machine or a combination of butt, saddle and/or socket fusion machines or equipment.1.5 The HFE operator qualification shall be on specific heat fusion procedures or standards specified for PE and PA pipes. For PE pipe and fittings, this shall include Practice F2620 or other company or pipe manufacturer’s procedures, or a combination thereof. For PA-11 pipe and fittings, this shall include Plastics Pipe Institute (PPI) Technical Report TR-45 or other company or pipe manufacturer’s procedures. For PA-12 pipe and fittings, this shall include Practice F3372 or other company or pipe manufacturer’s procedures, or a combination thereof. For other PA pipe materials, use other company or pipe manufacturer’s procedures.1.6 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers piston or plunger operated volumetric apparatus (POVA), in particular, the requirements, operating conditions, and test methods. POVA covered by this specification are pipettes, dispensers (with and without valve), dilutors, and displacement burets (with and without valve). Single measurement, replicate delivery, durability, functional (such as tests for leakage, broken parts, existence of air bubbles, and contamination), volumetric, and gravimetric tests shall be performed and shall conform to the requirements specified.1.1 This specification covers requirements, operating conditions, and test procedures for piston or plunger operated volumetric apparatus (POVA), as well as requirements for pipette operator training and qualification.1.2 This specification is applicable to all types of POVA. The following precautionary caveat pertains only to the test procedure portion, Annex A1 and Annex A2, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system maneuvering and remote operator proficiency. The align ground contacts with parallel rails test challenges robotic system locomotion, operator control, effective camera positioning, chassis shape variability (if available), and remote situational awareness by the operator. As such, the align ground contacts with parallel rails test can be used to represent situations where hazards must be avoided by the robot (for example, debris, puddles) surrounding a path in the environment, highlighting situational awareness demands on the operator while controlling the robot.5.2 The scale of the apparatus can vary to provide different constraints representative of typical intended deployment environments. For example, the three configurations can be representative of repeatable complexity for unobstructed environments (open configuration), relatively open parking lots with spaces between cars (rectangular confinement configuration), or within bus, train, or plane aisles, or dwellings with hallways and doorways (square confinement configuration).5.3 The test apparatuses are low cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and operators.5.4 Evaluation—This test method can be used in a controlled environment to measure baseline capabilities. The parallel rails apparatus can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc.5.5 Procurement—This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits.5.6 Training—This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across squads, regions, or national averages.5.7 Innovation—This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.1.1 This test method is intended for remotely operated ground robots operating in complex, unstructured, and often hazardous environments. It specifies the apparatuses, procedures, and performance metrics necessary to measure the capability of a robot to align its ground contacts while maneuvering across parallel rails. This test method is one of several related maneuvering tests that can be used to evaluate overall system capabilities.1.2 The robotic system includes a remote operator in control of most functionality, so an onboard camera and remote operator display are typically required. This test method can be used to evaluate assistive or autonomous behaviors intended to improve the effectiveness or efficiency of remotely operated systems.1.3 Different user communities can set their own thresholds of acceptable performance within this test method for various mission requirements.1.4 Performing Location—This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented.1.5 Units—The International System of Units (a.k.a. SI Units) and U.S. Customary Units (a.k.a. Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable use of readily available materials in different countries. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system mobility and remote operator proficiency. The variable height rail obstacle challenges robotic system locomotion, suspension systems to maintain traction, rollover tendencies, high-centering tendencies, self-righting (if necessary), chassis shape variability (if available), and remote situational awareness by the operator. As such, the variable height rail obstacle can be used to represent obstacles in the environment, such as railroad tracks, curbs, and debris.5.2 The scale of the apparatus can vary to provide different constraints representative of typical obstacle spacing in the intended deployment environment. For example, the three configurations can be representative of repeatable complexity for unobstructed obstacles (open configuration), relatively open parking lots with spaces between cars (rectangular confinement configuration), or within bus, train, or plane aisles, or dwellings with hallways and doorways (square confinement configuration).5.3 The test apparatuses are low cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and operators.5.4 Evaluation—This test method can be used in a controlled environment to measure baseline capabilities. The variable height rail obstacle can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc.5.5 Procurement—This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits.5.6 Training—This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across squads, regions, or national averages.5.7 Innovation—This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.1.1 This test method is intended for remotely operated ground robots operating in complex, unstructured, and often hazardous environments. It specifies the apparatuses, procedures, and performance metrics necessary to measure the capability of a robot to negotiate an obstacle in the form of variable height rail. This test method is one of several related obstacle tests that can be used to evaluate overall system capabilities.1.2 The robotic system includes a remote operator in control of most functionality, so an onboard camera and remote operator display are typically required. This test method can be used to evaluate assistive or autonomous behaviors intended to improve the effectiveness or efficiency of remotely operated systems.1.3 Different user communities can set their own thresholds of acceptable performance within this test method for various mission requirements.1.4 Performing Location—This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented.1.5 Units—The International System of Units (a.k.a. SI Units) and U.S. Customary Units (a.k.a. Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable use of readily available materials in different countries. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This specification defines the requirements for training and the development of training manuals for the unmanned aircraft systems (UAS) operator.1.2 The specification addresses the requirements or best practices, or both, for documentation and organization of a professional operator (that is, for compensation and hire) for the purposes of internal training programs and for programs offered to the general public.1.3 This specification supports professional entities that will receive operator certification by a CAA, and provide standards of practice for self- or third-party audit of operators of UAS.1.4 The standard case study used to develop this specification focused on operators of light UAS (below 1320 lb/600 kg as defined by EASA), but the specification may be applied to larger aircraft for using other methods of classification (that is, risk based classes and pilot privileges classes).1.5 Training manuals that do not include all the minimum requirements of this specification may not be referred to as meeting this specification.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method audits the volume of material in a stockpile and is used with a density value to calculate a tonnage calculation value used to compare the book value to the physical inventory results. This test method is used to determine the volume of coal or other materials in a stockpile.1.1 This test method covers procedures concerning site preparation, technical procedures, quality control, and equipment to direct the efforts for determining volumes of bulk material. These procedures include practical and accepted methods of volumetric determination.1.2 This test method allows for only two volume computation methods.1.2.1 Contour Test Method—See 8.1.1 and 9.1.1.2.2 Cross-Section Test Method—See 8.1.2 and 9.2.1.2.3 This test method requires direct operator compilation for both contours and cross-section development.1.2.4 The use of Digital Terrain Model software and procedures to create contours or cross sections for volume calculation is NOT encompassed in this test method.NOTE 1: A task group has been established to develop a test method for Digital Terrain Modeling (DTM) procedures. It will address all known data collection procedures such as conventional ground survey, photogrammetry, geodetic positioning satellite (GPS), and so forth.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is part of an overall suite of related test methods that provide repeatable measures of robotic system mobility and remote operator proficiency. This k-rail terrain specifically challenges robotic system locomotion, suspension systems to maintain traction, rollover tendencies, self-righting in complex terrain (if necessary), chassis shape variability (if available), and remote situational awareness by the operator. As such, it can be used to represent modest to challenging (when the cross-over slope configuration is used) outdoor terrain complexity or indoor debris within confined areas.5.2 The overall size of the terrain apparatus can vary to provide different constraints depending on the typical obstacle spacing of the intended deployment environment. For example, the terrain with containment walls can be sized to represent repeatable complexity within bus, train, or plane aisles; dwellings with hallways and doorways; relatively open parking lots with spaces between cars; or unobstructed terrains.5.3 The test apparatuses are low cost and easy to fabricate so they can be widely replicated. The procedure is also simple to conduct. This eases comparisons across various testing locations and dates to determine best-in-class systems and operators.5.4 Evaluation—This test method can be used in a controlled environment to measure baseline capabilities. It can also be embedded into operational training scenarios to measure degradation due to uncontrolled variables in lighting, weather, radio communications, GPS accuracy, etc.5.5 Procurement—This test method can be used to identify inherent capability trade-offs in systems, make informed purchasing decisions, and verify performance during acceptance testing. This aligns requirement specifications and user expectations with existing capability limits.5.6 Training—This test method can be used to focus operator training as a repeatable practice task or as an embedded task within training scenarios. The resulting measures of remote operator proficiency enable tracking of perishable skills over time, along with comparisons of performance across squads, regions, or national averages.5.7 Innovation—This test method can be used to inspire technical innovation, demonstrate break-through capabilities, and measure the reliability of systems performing specific tasks within an overall mission sequence. Combining or sequencing multiple test methods can guide manufacturers toward implementing the combinations of capabilities necessary to perform essential mission tasks.1.1 This test method is intended for remotely operated ground robots operating in complex, unstructured, and often hazardous environments. It specifies the apparatuses, procedures, and performance metrics necessary to measure the capability of a robot to traverse complex terrains in the form of k-rails. This test method is one of several related Terrain tests that can be used to evaluate overall system capabilities.1.2 The robotic system includes a remote operator in control of all functionality, so an onboard camera and remote operator display are typically required. Assistive features or autonomous behaviors that improve the effectiveness or efficiency of the overall system are encouraged.1.3 Different user communities can set their own thresholds of acceptable performance within this test method for various mission requirements.1.4 Performing Location—This test method may be performed anywhere the specified apparatuses and environmental conditions can be implemented.1.5 Units—The International System of Units (a.k.a. SI Units) and U.S. Customary Units (a.k.a. Imperial Units) are used throughout this document. They are not mathematical conversions. Rather, they are approximate equivalents in each system of units to enable use of readily available materials in different countries. This avoids excessive purchasing and fabrication costs. The differences between the stated dimensions in each system of units are insignificant for the purposes of comparing test method results, so each system of units is separately considered standard within this test method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
8 条记录,每页 15 条,当前第 1 / 1 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页