微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Some process catalysts used in refining can be poisoned when trace amounts of sulfur bearing materials are contained in the feedstocks. There are also government regulations as to how much sulfur is permitted to be present in commercial transportation fuels. This test method can be used to determine sulfur in process and downstream distribution streams. It can also be used for purposes of screening and quality control of finished hydrocarbon fuel products.1.1 This test method covers the determination of total sulfur in liquid hydrocarbon based fuel with a final boiling point of up to 450 °C. It is applicable to analysis of natural, processed and final product materials containing sulfur in the range of 4.0 mg/kg to 830 mg/kg (see Note 1).NOTE 1: For liquid hydrocarbons containing less than 4.0 mg/kg total sulfur or more than 830 mg/kg total sulfur, Test Method D5453 may be more appropriate.1.2 This test method is applicable for total sulfur determination in liquid hydrocarbons containing less than 0.35 % (m/m) halogen(s).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 4.1, 8.3, and Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Degradation of gear oils by oxidation or thermal breakdown, or both, can result in sludge buildup and render the oil unsuitable for further use as a lubricant.5.2 This is the only test method that employs glassware to measure the amount of sludge produced during oxidation and thermal degradation. This test method is a modification of Test Method D2893 which measures the viscosity increase and precipitation number of the oil stressed at 95 °C, but does not measure the amount of sludge formed.5.3 This test method can be used to evaluate the oxidation/thermal stability of gear oils. However, the test results may not correlate with the performance of gear oils in field service.1.1 This test method covers the determination of the oxidation characteristics of extreme pressure and non-extreme pressure gear oils and includes the quantitative determination of total sludge, viscosity change, and oil loss.NOTE 1: While the round-robin tests used ISO VG 220 extreme pressure gear oils for developing precision data, the test method can be extended to other viscosity grades and to non-extreme pressure gear oils. Refer to Classification D2422 for viscosity grades.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a semiquantitative estimate of the acid number of lubricating oils obtained from laboratory oxidation tests using smaller amounts of sample than Test Methods D974, D664, or D3339. It has specific application in Test Method D943 and in Test Method D4871. This test method, therefore, provides a means of monitoring the relative oxidation of lubricating oils by measuring changes in acid number, at different time intervals and under various oxidizing test conditions.5.2 Since this test method is semiquantitative, each laboratory shall develop its own criteria for each oxidation test method for determining when to switch from this semiquantitative test method to a more precise test method for acid number.1.1 This test method is a semiquantitative micro method intended for monitoring the changes in acidic constituents occurring in lubricating oils during oxidation testing, when the acid number of such oils falls within the range from 0.02 mg to 1.0 mg of potassium hydroxide per gram of sample. It is applicable to such oils as turbine oils, hydraulic oils, and other circulating oils.NOTE 1: This test method is a micro version of Test Method D974 and it produces results similar to that method.1.2 This test method is designed for use where sample size is limited. It shall not be used as a replacement for higher precision methods such as Test Methods D974 or D664. It shall not be used to monitor oils in-service.1.3 The values stated in SI units are to be regarded as the standard.1.3.1 Exception—The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 This test method is primarily concerned with the oxidation mass loss of manufactured carbon and graphite materials in air at temperatures from 371 °C to 677 °C.3.2 The test method will provide acceptable results at preselected test temperatures that yield less than 10 % mass loss in 100 h. These results can be used to determine relative service temperatures.1.1 This test method provides a comparative oxidation mass loss of manufactured carbon and graphite materials in air.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The induction period may be used as an indication of the tendency of motor gasoline to form gum in storage. It should be recognized, however, that its correlation with the formation of gum in storage may vary markedly under different storage conditions and with different gasolines.1.1 This test method covers the determination of the stability of gasoline in finished form only, under accelerated oxidation conditions. (Warning—This test method2 is not intended for determining the stability of gasoline components, particularly those with a high percentage of low boiling unsaturated compounds, as these may cause explosive conditions within the apparatus. However, because of the unknown nature of certain samples, the pressure vessel assembly shall include a safety burst-disc in order to safeguard the operator.)NOTE 1: For measurement of oxidation stability of gasoline by measurement of potential gum, refer to Test Method D873, or IP Test Method 138.NOTE 2: The precision data were developed with gasolines derived from hydrocarbon sources only without oxygenates.1.2 The accepted SI unit of pressure is the kilo Pascal (kPa), and of temperature is °C.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The test method is designed to predict the deposit-forming tendencies of engine oil in the piston ring belt and upper piston crown area. Correlation has been shown between the TEOST MHT procedure and the TU3MH Peugeot engine test in deposit formation. Such deposits formed in the ring-belt area of a reciprocating engine piston can cause problems with engine operation and longevity. It is one of the required test methods in Specification D4485 to define API Category-Identified engine oils.61.1 This test method covers the procedure to determine the mass of deposit formed on a specially constructed test rod exposed to repetitive passage of 8.5 g of engine oil over the rod in a thin film under oxidative and catalytic conditions at 285 °C. The range of applicability of the Moderately High Temperature Thermo-Oxidation Engine Test (TEOST MHT2) test method as derived from an interlaboratory study is approximately 10 mg to 100 mg. However, experience indicates that deposit values from 1 mg to 150 mg or greater may be obtained.1.2 This test method uses a patented instrument, method and patented, numbered, and registered depositor rods traceable to the manufacturer3 and made specifically for the practice and precision of the test method.41.3 The values stated in SI units are to be regarded as standard.1.3.1 Although not an SI unit, the special name liter (L) is allowed by SI for the cubic decimeter (dm3) and the milliliter (mL) for the SI cubic centimeter (cm3). Likewise, the special name millimeter (mm) is allowed by SI as a measurement of length.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method was originally developed to evaluate oxidation stability of lubricating base oils combined with additives chemistries similar to those found in gasoline engine oils and service.25.2 This test method is useful for screening formulated oils before engine tests. Within similar additive chemistries and base oil types, the ranking of oils in this test appears to be predictive of ranking in certain engine tests. When oils having different additive chemistries or base oil type are compared, results may or may not reflect results in engine tests. Only gasoline engine oils were used in generating the precision statements in this test method.1.1 This test method covers the oxidation stability of lubricants by thin-film oxygen uptake (TFOUT) Catalyst B. This test method evaluates the oxidation stability of petroleum products, and it was originally developed as a screening test to indicate whether a given re-refined base stock could be formulated for use as automotive engine oil3 (see Test Method D4742). The test is run at 160 °C in a pressure vessel under oxygen pressure, and the sample contains a metal catalyst package, a fuel catalyst, and water to partially simulate oil conditions in an operating engine. In addition, the test method has since been found broadly useful as an oxidation test of petroleum products.41.2 The applicable range of the induction time is from a few minutes up to several hundred minutes or more. However, the range of induction times used for developing the precision statements in this test method was from 40 min to 280 min.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Pressure units are provided in psig, and dimensions are provided in inches in Annex A1 and Annex A2, because these are the industry accepted standard and the apparatus is built according to the figures shown.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The results (of these tests) can be used to indicate storage stability of these fuels. The tendency of fuels to form gum and deposits in these tests has not been correlated with field performance (and can vary markedly) with the formation of gum and deposits under different storage conditions.1.1 This test method3 covers the determination of the tendency of aviation reciprocating, turbine, and jet engine fuels to form gum and deposits under accelerated aging conditions. (Warning—This test method is not intended for determining the stability of fuel components, particularly those with a high percentage of low boiling unsaturated compounds, as these may cause explosive conditions within the apparatus.)NOTE 1: For the measurement of the oxidation stability (induction period) of motor gasoline, refer to Test Method D525.1.2 The accepted SI unit of pressure is the kilo pascal (kPa); the accepted SI unit of temperature is °C.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to evaluate oxidation stability of lubricating base oils with additives in the presence of chemistries similar to those found in gasoline engine service. Test results on some ASTM reference oils have been found to correlate with sequence IIID engine test results in hours for a 375 % viscosity increase.5 The test does not constitute a substitute for engine testing, which measures wear, oxidation stability, volatility, and deposit control characteristics of lubricants. Properly interpreted, the test may provide input on the oxidation stability of lubricants under simulated engine chemistry.5.2 This test method is intended to be used as a bench screening test and quality control tool for lubricating base oil manufacturing, especially for re-refined lubricating base oils. This test method is useful for quality control of oxidation stability of re-refined oils from batch to batch.5.3 This test method is useful for screening formulated oils prior to engine tests. Within similar additive chemistry and base oil types, the ranking of oils in this test appears to be predictive of ranking in engine tests. When oils having completely different additive chemistry or base oil type are compared, oxidation stability results may not reflect the actual engine test result.5.4 Other oxidation stability test methods have demonstrated that soluble metal catalyst supplies are very inconsistent and they have significant effects on the test results. Thus, for test comparisons, the same source and same batch of metal naphthenates shall be used.NOTE 2: It is also recommended as a good research practice not to use different batches of the fuel component in test comparisons.1.1 This test method evaluates the oxidation stability of engine oils for gasoline automotive engines. This test, run at 160 °C, utilizes a high pressure reactor pressurized with oxygen along with a metal catalyst package, a fuel catalyst, and water in a partial simulation of the conditions to which an oil may be subjected in a gasoline combustion engine. This test method can be used for engine oils with viscosity in the range from 4 mm2/s (cSt) to 21 mm2/s (cSt) at 100 °C, including re-refined oils.1.2 This test method is not a substitute for the engine testing of an engine oil in established engine tests, such as Sequence IIID.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Pressure units are provided in psig, and dimensions are provided in inches in Annex A1, because these are the industry accepted standard and the apparatus is built according to the figures shown.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Sections 7 and 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
110 条记录,每页 15 条,当前第 1 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页