微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers carbon steel overboard discharge hull penetrations for system piping. Penetrations shall be classified as follows: Type I; Type II (Class 1 and Class 2); Type III (Class 1 and Class 2); and Type IV (Classes 1, 2, and 3). Doubler and insert plates shall be of material with physical properties equal to or better than the reinforced shell plate. Overboard discharges shall be combined to the maximum extent practicable to minimize the number of shell penetrations. Overboard discharges shall be located to minimize recirculation into suction seachests. Shell penetrations shall be located outside of cathodic protection areas. Penetration pipe extension past the shell plate shall be equal to the pipe wall thickness. 1.1 This specification covers carbon steel overboard discharge hull penetrations for system piping of NPS 1 through NPS 24 (see Note 1). Note 1: The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such TRADITIONAL terms as nominal diameter, size, and nominal size. 1.2 The minimum pipe schedule and reinforcement dimensions presented in Tables 1-6 are based on specifications in 46 CFR, 56.50-95, and Navy Design Data Sheet 100-1. 1.3 This specification does not include sea chest penetrations. 1.4 This specification does not include penetrations in protective plating. 1.5 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Tests performed using this test method provide a detailed record of cone tip resistance, which is useful for evaluation of site stratigraphy, engineering properties, homogeneity and depth to firm layers, voids or cavities, and other discontinuities. The use of a friction sleeve and pore water pressure element can provide an estimate of soil classification, and correlations with engineering properties of soils. When properly performed at suitable sites, the test provides a rapid means for determining subsurface conditions.5.2 This test method provides data used for estimating engineering properties of soil intended to help with the design and construction of earthworks, the foundations for structures, and the behavior of soils under static and dynamic loads.5.3 This method tests the soil in situ and soil samples are not obtained during the test. The interpretation of the results from this test method provides estimates of the types of soil penetrated. Engineers may obtain soil samples from parallel borings for correlation purposes but prior information or experience may preclude the need for borings.NOTE 2: The quality of the results produced by this standard is dependent on the competence of the personal performing the test, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors and Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the procedure for determining the resistance of a friction cone or a piezocone as it is advanced into subsurface soils at a steady rate.1.2 This test method applies to electronic friction cones and does not include hydraulic, pneumatic, or free-fall cones, although many of the procedural requirements herein could apply to those cones. Also, offshore/marine Cone Penetration Testing (CPT) systems may have procedural differences because of the difficulties of testing in those environments (for example, tidal variations, salt water and waves). Field tests using mechanical-type cones are covered elsewhere by Test Method D3441.1.3 This test method can be used to determine pore water pressures developed during the penetration when using a properly saturated piezocone. Pore water pressure dissipation, after a push, can also be monitored for correlation to time rate of consolidation and permeability.1.4 Additional sensors, such as inclinometer, seismic (Test Methods D7400), resistivity, electrical conductivity, dielectric, and temperature sensors, may be included in the cone to provide additional information. The use of an inclinometer is recommended since it will provide information on potentially damaging situations during the sounding process.1.5 CPT data can be used to interpret subsurface stratigraphy, and through use of site specific correlations, they can provide data on engineering properties of soils intended for use in design and construction of earthworks and foundations for structures.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method1.7 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.7.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 These cone penetration tests not only evaluate the consistency of lubricating greases over the full range of NLGI numbers from 000 to 6, but also evaluate the consistency of stiff greases having penetration numbers less than 85. In contrast, Test Method D937 is aimed at petrolatums and Test Method D1403 uses less precise 1/4 and 1/2-scale equipment intended for use when the sample quantity is limited.5.2 Cone penetration test results provide one measure of the consistency of a grease. Worked penetration results are required to determine to which NLGI consistency grade a grease belongs. Undisturbed penetration results provide a means of evaluating the effect of storage conditions on grease consistency.5.3 Although no correlation has been developed between cone penetration results and field service, the cone penetrations obtained by the four procedures are widely used for specification purposes, such as in users' material specifications and suppliers' manufacturing specifications.1.1 These test methods cover four procedures for measuring the consistency of lubricating greases by the penetration of a cone of specified dimensions, mass, and finish. The penetration is measured in tenths of a millimetre.NOTE 1: The National Lubricating Grease Institute (NLGI)3 classified greases according to their consistency as measured by the worked penetration. The classification system is as follows:NLGIConsistency Number Worked Penetration Range,25 °C (77 °F)000 445 to 475 00 400 to 430  0 355 to 385  1 310 to 340  2 265 to 295  3 220 to 250  4 175 to 205  5 130 to 160  6  85 to 1151.1.1 The procedures for unworked, worked, and prolonged worked penetration are applicable to greases having penetrations between 85 and 475, that is, to greases with consistency numbers between NLGI 6 and NLGI 000. An undisturbed penetration test, described in Appendix X1, is similar to the unworked penetration test.1.1.2 The block penetration procedure is applicable to greases that are sufficiently hard to hold their shape. Such greases usually have penetrations below eighty-five tenths of a millimetre.1.1.3 Unworked penetrations do not generally represent the consistency of greases in use as effectively as do worked penetrations. The latter are usually preferred for inspecting lubricating greases.1.2 None of the four procedures is considered suitable for the measurement of the consistency of petrolatums by penetration. Test Method D937 should be used for such products.1.3 The dimensions of the equipment described in these test methods are given in SI units as the primary unit of measure with equivalent imperial units as accetpable alternatives where applicable. In cases where equivalent SI conversions are not known, notes are added for clarification. Temperatures and other dimensions are given in the preferred SI units; the values shown in parentheses are provided for information.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM D5/D5M-20 Standard Test Method for Penetration of Bituminous Materials Active 发布日期 :  1970-01-01 实施日期 : 

5.1 The penetration test is used as a measure of consistency. Higher values of penetration indicate softer consistency.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers determination of the penetration of semi-solid and solid bituminous materials.1.2 The needles, containers, and other conditions described in this test method provide for the determinations of penetrations up to 500.NOTE 1: See the section on Penetration of Test Methods D244 for information and precision and bias on testing emulsion residue.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is for the rapid assessment of the static segregation resistance of self-consolidating concrete.5.2 The method is useful for rapid assessment of the static segregation resistance of self-consolidating concrete during mixture development in the laboratory as well as prior to placement of the mixture in the field. Test Method C1610/C1610M for static segregation of SCC is not sufficiently rapid, and the non-mandatory Visual Stability Index as determined through the procedure described in Appendix X1 of Test Method C1611/C1611M is highly subjective and qualitative.5.3 Appendix X1 provides non-mandatory criteria that may be used to indicate the degree of static segregation resistance of self-consolidating concrete mixtures.1.1 This test method covers the rapid assessment of static segregation resistance of normal-weight self-consolidating concrete (SCC). The test does not measure static segregation resistance directly, but provides an assessment of whether static segregation is likely to occur.1.2 The test apparatus and protocol were developed based on tests with SCC mixtures containing saturated surface dry (SSD) coarse aggregates ranging in relative density from 2.67 to 2.79 and in nominal maximum size from 9.5 mm to 25 mm. For SCC mixtures outside these ranges, testing is recommended to establish a correlation between penetration depth and static segregation measured in accordance with Test Method C1610/C1610M. This test method shall not be used to assess the static segregation resistance of self-consolidating concrete containing lightweight aggregates or heavyweight aggregates without prior testing to establish a correlation.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Normalization of penetration resistance data is a frequently used method to evaluate the liquefaction susceptibility of sands. A large case history database from many countries has been accumulated to estimate instability of saturated sands during earthquakes (1,2,3,4). This test is used extensively for a great variety of geotechnical exploration programs where earthquake induced instability of soil needs to be evaluated. Many widely published correlations and local correlations are available, which relate penetration resistance to the engineering properties of soils and the behavior of earthworks and foundations. The data from different countries with differing drilling techniques have been interpreted to develop a preferred normalization approach. This approach has been termed the N1 method proposed by H. Bolton Seed and his colleagues (2,3). Evaluation of liquefaction potential is beyond the scope of this practice. Interpretation of normalized penetration resistance values should be performed by qualified personnel familiar with the multitude of factors influencing interpretation of the data. One purpose of this practice is to attempt to develop a more accurate data base of penetration resistance data from future liquefaction case histories. The normalized penetration resistance determined in this practice may be useful for determination of other engineering properties of sands.This practice is based on field studies of limited depth and chamber testing of limited stress conditions (1,2,5,6). The existing data bases also are limited in soil types examined. Drilling equipment and methods vary widely from country to country. The majority of data is obtained using the fluid rotary method of drilling with small drill rods and donut or safety type hammers. Some studies have shown that other drilling methods, such as hollow stem augers can be used to successfully collect penetration resistance data (7,8). When using alternate drilling methods, however, it is easier to cause disturbance, and potential disturbance must be evaluated carefully. If there is any question regarding disturbance from alternative drilling methods, use of fluid rotary drilling is recommended.A majority of case history liquefaction data has been collected at shallow depths of less than 50 ft. Stress correction information is limited to 3 to 6 ton/ft2 (3000 to 6000 kPa) range. Knowledge is limited for energy transmission effects with drill rod lengths exceeding 100 to 150 ft (30 to 45 m).This practice is limited to evaluation of level ground sites. For soils subjected to non-level ground conditions, other correction factors may be required (3).Note 2—The reliability of data and interpretations generated by this practice is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 generally are considered capable of competent testing. Users of this practice are cautioned that compliance with Practice D3740 does not assure reliable testing. Reliable testing depends on several factors and Practice D3740 provides a means of evaluating some of these factors.This practice is dependent on existing data and the currently accepted practice for measurement of drill rod energy ratio, ERi, Test Method D4633 and of the penetration resistance test, Test Method D1586. The current practice consists of adjusting raw N values to a drill rod energy ratio of 60 % (2). Recommended practice stresses measurement of the drill rod energy ratio because there often are losses in the impact anvil. This measurement is performed by instrumenting drill rods at the surface. Energy should be obtained by using both force and acceleration measurements for integration of the product of force and velocity.For many automatic hammer systems, once the drill rod energy ratio is known for the particular design, periodic monitoring of hammer terminal impact velocity (kinetic energy), or drop height (potential energy), may be required to assure proper hammer operation. Most manufacturers can supply energy transmission data for automatic hammers. Kinetic energy or potential energy checks do not provide drill rod energy, ERi, because of losses through the anvil, but they can provide a useful check that the hammer is operating correctly. Velocity checks or drop height checks can be performed using radar or tape extensometers, respectively.Method A—Depends on assumed drill rod energies for hammer systems such as the safety and automatic hammer systems commonly used in North America and other countries (2,10,11). Assumed energy ratios for other hammer systems should be based on previously published measurements. The assumed values should be documented and source data referenced. The hammer system should be operated in the same method as when the documented energy data was collected.Method B—Depends on performance of energy measurements for the system during testing. These measurements may be performed using Test Method D4633 or other methods, such as force-acceleration measurements. The measurement methods, configurations, calibrations, and computations should be documented or reported. It is possible to adjust hammer weight and drop height of the hammer system in place of performing the energy correction. If these adjustments are made, the developed methodology and supporting energy measurements should be reported.The correction of N60 to a reference stress level is based on a stress correction factor, CN. A typical stress exponent, n, used in practice, ranges from 0.45 to 0.6 (6,16). The stress adjustment factor was developed using chamber testing of clean sands. The adjustments depend on particle size, density, over consolidation and aging (5,17). Frequently, the soils of concern are young alluvial sand deposits of low density. These factors may not be applicable to sands with fines (SM, SC) or sands with more compressible minerals (mica or calcareous). With the lack of controlled data for these soils, however, current practice is to apply these factors to these soils for preliminary evaluations of soil stability. Other methods for normalizing soil values can be used and are acceptable if the method and reasoning are documented (5,17).Soil liquefaction is most often associated with saturated sands. Most investigations will be performed below the water table. The normalization of penetration resistance also may be applicable to dry sands. In some cases, where future soil saturation is anticipated, testing can be performed in dry sands. If the testing is performed in dry sands, the user should be aware of possible changes in the soil upon saturation. This is especially true with dirty dry sands that may undergo collapse upon saturation. Dry sands are more stable during drilling such that a wider variety of drilling methods are acceptable and many of the drilling precautions in Section 11 may be waived.Use of this practice provides a disturbed soil sample for identification and for laboratory testing. The classification information commonly is used to develop site stratigraphy and to identify zones where further, more detailed investigations may be required.1.1 This practice outlines a procedure to obtain a record of normalized resistance of sands to the penetration of a standard sampler driven by a standard energy for estimating soil liquefaction potential during earthquakes. The normalized penetration resistance determined in this practice may be useful for determination of other engineering properties of sands.1.2 This practice uses Test Method D1586 with additions and modifications to minimize disturbance of saturated loose cohesionless sands during drilling. This practice combines results of Test Method D1586 and interprets the data for normalization purposes.1.3 Due to inherent variability of the SPT, guidance is given on test configuration and energy adjustments. Penetration resistance is adjusted for energy delivered in the penetration test. Energy adjustments can be estimated or measured and reported.1.4 Standard practice for normalizing penetration resistance values is given. Penetration resistance data are normalized to a standard overburden stress level.1.5 The normalized penetration resistance data may be used to estimate liquefaction resistance of saturated sands from earthquake shaking. Evaluation of liquefaction resistance may be applied to natural ground conditions or foundations for either planned or existing structures.1.6 Using this practice representative disturbed samples of the soil can be collected for identification purposes.1.7 This practice is limited to use in cohesionless soils (see Test Method D2487 and classifications of SM, SW, SP, SP-SM, and SW-SM Practice D2488). In most cases, testing is performed in saturated deposits below the water table. In some cases, dry sands may be tested (see 5.4). This practice is not applicable to lithified materials or fine grained soils. Gravel can interfere with the test and result in elevated penetration resistance values. Normalization of penetration resistance values for gravelly soils is beyond the scope of this practice.1.8 Penetration resistance measurements often will involve safety planning, administration, and documentation. This practice does not purport to address all aspects of exploration and site safety. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Performance of the test usually involves use of a drill rig; therefore, safety requirements as outlined in applicable safety standards. For example, OSHA regulations, DCDMA safety manual, drilling safety manuals, and other applicable state and local regulations must be observed.1.9 The values stated in inch-pound units are to be regarded as standard. Within the text, the SI units, are shown in parentheses. The values stated in each system are not equivalents, therefore, each system must be used independently of the other.1.9.1 In pressure correction calculations, common units are ton/ft2, kg/cm2, atm, and bars. Since these units are approximately equal (within a factor of 1.1), many engineers prefer the use of these units in stress correction calculations. For those using kPa or kN/m2, 100 kPa is approximately equal to one ton/ft2. The stress exponent, n, (see 3.3.1) is approximately equal for these units.1.10 This practice may not be applicable in some countries, states, or localities, where rules or standards may differ for applying penetration resistance to liquefaction estimates. Other practices exist for estimating soil instability from penetration resistance data. Procedures may change with advances in geotechnical engineering. It is dependent on the user in consultation with experienced engineers to select appropriate methods and correction to data. In earthquake engineering studies, many phenomena can affect soil instability. The practice reflects only one current exploration technique and method for normalizing penetration resistance data to a common level for comparisons to case history information.1.11 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method covers the laboratory evaluation of the electrical conductance of concrete samples to provide a rapid indication of their resistance to chloride ion penetration. In most cases the electrical conductance results have shown good correlation with chloride ponding tests, such as AASHTO T259, on companion slabs cast from the same concrete mixtures (Refs 1-5).4.2 This test method is suitable for evaluation of materials and material proportions for design purposes and research and development.4.3 Sample age has significant effects on the test results, depending on the type of concrete and the curing procedure. Most concretes, if properly cured, become progressively and significantly less permeable with time.4.4 This test method was developed originally for evaluations of alternative materials, but in practice its use has evolved to applications such as quality control and acceptance testing. Factors such as ingredient materials used in concrete mixtures and the method and duration of curing test specimens affect the results of this test (see Note 1). When this method is used for mixture qualification and acceptance testing, it is imperative that the curing procedures and the age at time of testing be clearly specified.NOTE 1: When using this test for determining acceptability of concrete mixtures, statistically-based criteria and test age for prequalification, or for acceptance based on jobsite samples, should be stated in project specifications. Acceptance criteria for this test should consider the sources of variability affecting the results and ensure balanced risk between supplier and purchaser. The anticipated exposure conditions and time before a structure will be put into service should be considered. One approach to establishing criteria is discussed in Ref (6).4.5 Table X1.1 in Appendix X1 provides a qualitative relationship between the results of this test and the chloride ion penetrability of concrete.4.6 Care should be taken in interpreting results of this test when it is used on surface-treated concretes, for example, concretes treated with penetrating sealers. The results from this test on some such concretes indicate low resistance to chloride ion penetration, while 90 day chloride ponding tests on companion slabs show a higher resistance.4.7 The details of the test method apply to 100 mm nominal diameter specimens. This includes specimens with actual diameters ranging from 95 mm to 100 mm. Other specimen diameters may be tested with appropriate changes in the applied voltage cell design (see 7.5 and Fig. 1).FIG. 1 Applied Voltage Cell (Construction Drawing)4.7.1 For specimen diameters other than 95 mm, the test result value for total charge passed must be adjusted following the procedure in 11.2. For specimens with diameters less than 95 mm, particular care must be taken in coating and mounting the specimens to ensure that the conductive solutions are able to contact the entire end areas during the test.1.1 This test method covers the determination of the electrical conductance of concrete to provide a rapid indication of its resistance to the penetration of chloride ions. This test method is applicable to types of concrete where correlations have been established between this test procedure and long-term chloride ponding procedures such as those described in AASHTO T 259. Examples of such correlations are discussed in Refs (1-5).21.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method measures the initial filtration efficiency of materials by sampling representative volumes of the upstream and downstream latex aerosol concentrations in a controlled airflow chamber.5.2 This test method provides specific test techniques for both manufacturers and users to evaluate materials when exposed to aerosol particle sizes between 0.1 and 5.0 μm.5.2.1 This test method establishes a basis of efficiency comparison between materials.1.1 This test method establishes procedures for measuring the initial particle filtration efficiency of materials using monodispersed aerosols.1.1.1 This test method utilizes light-scattering particle counting in the size range of 0.1 to 5.0 μm and airflow test velocities of 0.5 to 25 cm/s.1.2 The test procedure measures filtration efficiency by comparing the particle count in the feed stream (upstream) to that in the filtrate (downstream).1.3 The values stated in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.4 The following precautionary caveat pertains only to the test methods portion, Section 10, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Light penetration may be used to control the quality of many RECPs. Light penetration has not been proven to relate to field performance for all materials.5.2 The light penetration of RECPs may vary considerably, depending on the composite materials used in the matrix of the mat or due to inconsistency within a given mat. To minimize variation, specific sample size and procedures are indicated in this test method to help ensure comparable results.5.3 This test method may be used to determine the effect of different composite materials and makeup of RECPs on the penetration of light.5.4 This test method may be used for acceptance testing of commercial shipments of RECPs. Comparative tests as directed in 5.4.1 may be advisable.5.4.1 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. At a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are formed from a lot of material of the type in question. The test specimens should be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student’s t-test for unpaired data and an acceptable probability level chosen by the two begun. If bias is found, either its cause must be corrected, or the purchaser and supplier must agree upon the known bias.NOTE 1: The light penetration has no definitive relationship to the amount of ground cover provided by a RECP, as the amount of light penetration may include light passing through translucent elements or light deflecting off of elements of the RECP structure. Thus, this test method is not intended to be used to determine a percent ground cover value for RECPs.NOTE 2: The user should be aware that the makeup and possible movement of the composite materials, and the like, may affect the RECPs following the time when they are rolled up on rolls, shipped, and stored.1.1 This test method covers measuring the amount of light that penetrates through a rolled erosion control product.1.2 This test method does not provide light penetration values for RECPs under variable normal sun and soil conditions. This test method determines nominal light penetration.1.3 This test method is not to be used to determine a percent ground cover value for RECPs, as the amount of light penetration may include light passing through translucent material or reflecting off surfaces.1.4 The values stated as a percentage are to be regarded as the standard. The values provided in footcandles are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to determine the performance of a firestop system with respect to exposure to a standard time-temperature fire test and a hose stream test. The performance of a firestop system is dependent upon the specific assembly of materials tested including the number, type, and size of penetrations and the floors or walls in which it is installed.5.2 Two ratings shall be established for each firestop system. An F rating shall be based upon flame occurrence on the unexposed surface, while the T rating shall be based upon the temperature rise as well as flame occurrence on the unexposed side of the firestop system. These ratings, together with detailed performance data such as the location of through-openings and temperatures of penetrating items are intended to be one factor in assessing performance of firestop systems.1.1 This test method is applicable to firestop systems of various materials and construction. Firestop systems are intended for use in openings in fire-resistive walls and floors that are evaluated in accordance with Test Methods E119.1.2 Tests conducted in conformance with this test method record firestop system performance during the test exposure; but such tests shall not be construed to determine suitability of the firestop system for use after test exposure.1.3 This test method also measures the resistance of firestop systems to an external force stimulated by a hose stream. However, this test method shall not be construed as determining the performance of the firestop system during actual fire conditions when subjected to forces such as failure of cable support systems and falling debris.1.4 The intent of this test method is to develop data to assist others in determining the suitability of the firestops for use where fire resistance is required.1.5 This test method does not apply to membrane penetrations of a floor-ceiling assembly or roof-ceiling assembly that are tested as part of the assembly in accordance with Test Methods E119.1.6 This test method does not apply to membrane penetrations of load-bearing walls.1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.8 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of materials, products, or assemblies under actual fire conditions.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered requirements of the standard.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides a means for readily determining if a ceramic is properly fired (matured). Penetration of any extent may negate the usefulness of the ceramic, or, arbitrarily, some degree of penetration may be acceptable for the use or commercial quality of the item being tested.1.1 This test method covers procedures for detecting pores, cracks, or other voids that may be present in otherwise impermeable whiteware ceramics, or as porosity in underfired ware.NOTE 1: This test method was partially derived from ANSI C29.1.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This non-destructive test method contains procedures and equipment requirements to quantitatively determine the surface penetration of water at a single location on a masonry wall. The test method is not designed to determine the overall water penetration and leakage of a masonry system.4.2 Excessive water penetration of masonry may degrade masonry wall performance with respect to thermal conductivity, durability, efflorescence, staining, corrosion of embedded metal items, and water leakage.4.3 This test may be used to measure the rate of surface water penetration for in-situ masonry and field mockups. Common applications of this method have been comparison of water penetration rates of walls before and after repairs, and testing the efficacy of coatings. Alternative procedures are also provided to simulate the effect of local climatology on water penetration of masonry wall surfaces.4.4 The outer surface of all masonry walls will experience water penetration when subjected to wind-driven rain. The resistance to water penetration is dependent on materials, workmanship, design, and maintenance. Some wall types accommodate large volumes of water penetration, without deleterious effects, through the presence of properly designed and installed drainage systems including flashing and weep holes. Use of this standard without consideration of the overall wall system may lead to incorrect conclusions regarding performance.4.5 It is the intent of this standard that a sheet of water be developed and maintained on the wall surface during testing. In some cases, due to the surface texture of the masonry, the application of a coating, or other factors, a sheet of water will not consistently form. In those cases, results of this test method will likely be inaccurate.4.6 This test method is similar to but distinct from the laboratory Test Method E514/E514M. This standard is a field test method designed to test in-situ walls and measures water penetration of masonry at its surface. Test Method E514/E514M is a laboratory test method designed to test laboratory fabricated wall specimens and measures the water that has penetrated into and through the masonry specimen and is collected. Results from this standard and Test Method E514/E514M are not the same.1.1 This test method covers the field determination of water penetration of a masonry wall surface under specific water flow rate and air pressure conditions. This test is intended for use on any masonry wall surface that can be properly instrumented and tested within the requirements of this standard. This test method is not identical to and the results are not the same as laboratory standard Test Method E514/E514M. Test Method E514/E514M measures through-wall water penetration, whereas this test method only measures surface water penetration.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Penetration resistance is an important end-use performance of thin flexible materials where a sharp-edged product can destroy the integrity of a barrier wrap. This will permit package entry/exit of gases, odors, and unwanted contaminates, causing potential harm to the product and reducing shelf-life. Material response to penetration will vary with numerous factors, such as film thickness, elastic modulus, rate of penetration, temperature, shape and type of probe. Consequently, material responses from puncture to stretch may be observed and quantified using this method. Although numerous combinations of experimental factors can be devised and used to simulate specific end-use applications, the recommended conditions in this method should be followed for standard comparisons of materials.1.1 This test method permits flexible barrier films and laminates to be characterized for slow rate penetration resistance to a driven probe. The test is performed at room temperature, by applying a biaxial stress at a single test velocity on the material until perforation occurs. The force, energy, and probe penetration to failure are determined.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

The rain spray test described in 8.1 as Method A is based upon Test Method E 331 which is intended for use in the evaluation of exterior windows, curtain walls, and doors. This test method is intended to supplement the water spray test in Practice E 823 that does not include the effects of wind-driven rain. This method includes the use of a pressure differential to enhance the penetration of water into the assembly being tested. This type of pressure differential can occur with many types of solar collector mounting configurations. In the case of solar collectors that form a building element, for example, a roof, this pressure differential will be caused by differences of pressure inside and outside the building. In the case of solar collectors mounted on standoffs or racks, this pressure differential will be caused by positive and negative wind forces acting simultaneously on faces of the collector.Water leakage due to joint expansion can be influenced by several factors, including: the specific collector design and materials used, the test specimen temperature, and the water spray temperature (Note 1), in addition to the pressure differential. The temperature conditions will vary in outdoor exposure. The test temperatures should be selected to be representative of outdoor conditions where the collectors will be used.Note 1—Water spray temperatures are likely to range from 4.5°C to 29.4°C (40 to 85°F).1.1 This test method covers the determination of the resistance of flat plate solar collectors to water penetration when water is applied to their outer surfaces with a static air pressure at the outer surface higher than the pressure at the interior of the collector.1.2 This test method is applicable to any flat plate solar collector.1.3 The proper use of this test method requires a knowledge of the principles of pressure and deflection measurement.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary information is contained in Section 6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

Preservatives of the metallic series and oil soluble preservatives are not readily apparent in a cross section of wood either due to similar color to the species of wood or lack of color of the preservative itself. Chemical staining of a treated specimen of wood reveals the presence of the preservative. The sapwood and heartwood of Douglas-Fir and the pine species can be differentiated by a chemical stain.1.1 These test methods cover procedures for determining penetration of preservatives in wood in cases where demarcation between the treated and untreated wood is not readily visible. Included are test methods for differentiating the heartwood and the sapwood of wood samples for specific species, and a test method for differentiating the heartwoods between the red oaks and the white oaks. 1.2 The procedures appear in the following order: Procedure Sections Penetration of Arsenic-Containing Preservatives 6 to 8 Penetration of Copper-Containing Preservatives 9 to 11 Penetration of Fluoride-Containing Preservatives 12 to 15 Penetration of Pentachlorophenol Using 4,4[prime]-bis-Dimethylamino-Triphenylmethane (DMTM) 16 to 20 Penetration of Pentachlorophenol Using a Silver-Copper Complex Known as "Penta-Check" 21 to 24 Penetration of Solvent Used With Oil-Soluble Preservatives 25 to 28 Penetration of Zinc-Containing Preservatives 29 to 32 Differentiating between Sapwood and Heartwood in Pine Species (Pinus sp.) 33 to 36 Differentiating between Sapwood and Heartwood in Douglas Fir (Pseudotsuga menziesii) 37 to 40 Differentiating between Sapwood and Heartwood in White Fir (Abies concolor) 41 to 44 Differentiating Between Woods of the Red Oak and the White Oak Species 45 to 48 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
63 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页