微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 A program based on this guide will provide assurance to all concerned that the appropriate elements of radiation safety have been included to protect workers, the general public, and the environment in proximity to the decommissioning activities.4.2 Implementation of such a program will provide assurance to those agencies responsible for review or audit of the decommissioning project that the requirements for radiation protection have been addressed.1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations.1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project.1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan.1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of the general public and the environment by describing the basic elements of a radiation protection program for decommissioning operations.1.5 This guide defines the elements of a radiation protection program that will ensure that the goals and objectives of a decommissioning activity are attained within the radiological limits and restrictions imposed by applicable governing and regulating agencies. The implementation of such a program will provide radiological protection to personnel and the environment. This guide should be used for developing the documentation that defines the intent and implementation of the radiation protection program for a specific decommissioning project.1.6 The Radiation Protection Program should address the following elements (see Note 1). This program shall be developed and maintained such that it satisfies all applicable Quality Assurance requirements developed for the decommissioning project.NOTE 1: If the site to be decommissioned is adjacent to an operating site, the radiological impact of the operating site must be considered in the development of the Radiation Protection Program for the decommissioning site.1.7 This guide does not address the subjects of emergency preparedness, safeguards, accountability, waste handling, storage, and transportation. Each of these issues has a direct interface with the radiation protection program. However, each constitutes a program in and of itself from program definition through implementation.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers special aggregates for use in radiation-shielding concretes in which composition or high specific gravity, or both, are of prime consideration. Aggregates covered by specification include the natural mineral aggregates of either high density or high fixed water content, or both. These include aggregates that contain or consist predominately of materials such as barite, magnetite, hematite, ilmenite, and serpentine. Also included are synthetic aggregates such as iron, steel, ferrophosphorus and boron frit or other boron compounds. Fine aggregate consisting of natural or manufactured sand including high-density minerals. Coarse aggregate may consist of crushed ore, crushed stone, or synthetic products, or combinations or mixture thereof. Aggregates shall meet the required uniformity of specific gravity and fixed water content. The materials shall also meet the required chemical composition for serpentine, limonite, goethite, barite, ilmenite, hematite, magnetite, iron, ferrophosphorus, boron frit, boron carbide, calcium carbide.1.1 This specification covers special aggregates and/or high-density aggregates for use in radiation-shielding concretes in which composition or high specific gravity, or both, are of prime consideration.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this standard.1.4 The following precautionary caveat pertains only to the test method portion, Section 9, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This descriptive nomenclature is intended to give accurate descriptions of some common or important naturally occurring and synthetic constituents of aggregates for radiation-shielding concrete, that, at the same time, are not common or important constituents of concrete aggregates in general use. While most of the minerals and rocks discussed below may occur in small quantities in aggregates in general use, they are not major constituents of such aggregates. Common constituents of aggregates in general use are described in Descriptive Nomenclature C294. Radiation-shielding concrete often contains such aggregates, but other special aggregates are used in some circumstances.1.2 The synthetic aggregates included are ferrophosphorus and boron frit.1.3 The descriptions are not adequate to permit the identification of materials, since accurate identification of natural and synthetic aggregate constituents in many cases can only be made by a qualified geologist, mineralogist, or petrographer, using the apparatus and procedures of those sciences.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is intended to be used by wire producers and thermocouple manufacturers for certification of refractory metal thermocouples. It is intended to provide a consistent method for calibration of refractory metal thermocouples referenced to a calibrated radiation thermometer. Uncertainty in calibration and operation of the radiation thermometer, and proper construction and use of the test furnace are of primary importance.5.2 Calibration establishes the temperature-emf relationship for a particular thermocouple under a specific temperature and chemical environment. However, during high temperature calibration or application at elevated temperatures in vacuum, oxidizing, reducing or contaminating environments, and depending on temperature distribution, local irreversible changes may occur in the Seebeck Coefficient of one or both thermoelements. If the introduced inhomogeneities are significant, the emf from the thermocouple will depend on the distribution of temperature between the measuring and reference junctions.5.3 At high temperatures, the accuracy of refractory metal thermocouples may be limited by electrical shunting errors through the ceramic insulators of the thermocouple assembly. This effect may be reduced by careful choice of the insulator material, but above approximately 2100 °C, the electrical shunting errors may be significant even for the best insulators available.1.1 This test method covers the calibration of refractory metal thermocouples using a radiation thermometer as the standard instrument. This test method is intended for use with types of thermocouples that cannot be exposed to an oxidizing atmosphere. These procedures are appropriate for thermocouple calibrations at temperatures above 800 °C (1472 °F).1.2 The calibration method is applicable to the following thermocouple assemblies:1.2.1 Type 1—Bare-wire thermocouple assemblies in which vacuum or an inert or reducing gas is the only electrical insulating medium between the thermoelements.1.2.2 Type 2—Assemblies in which loose fitting ceramic insulating pieces, such as single-bore or double-bore tubes, are placed over the thermoelements.1.2.3 Type 2A—Assemblies in which loose fitting ceramic insulating pieces, such as single-bore or double-bore tubes, are placed over the thermoelements, permanently enclosed and sealed in a loose fitting metal or ceramic tube.1.2.4 Type 3—Swaged assemblies in which a refractory insulating powder is compressed around the thermoelements and encased in a thin-walled tube or sheath made of a high melting point metal or alloy.1.2.5 Type 4—Thermocouple assemblies in which one thermoelement is in the shape of a closed-end protection tube and the other thermoelement is a solid wire or rod that is coaxially supported inside the closed-end tube. The space between the two thermoelements can be filled with an inert or reducing gas, or with ceramic insulating materials, or kept under vacuum.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The electrical properties of gate and field oxides are altered by ionizing radiation. The method for determining the dose delivered by the source irradiation is discussed in Practices E666, E668, E1249, and Guide E1894. The time dependent and dose rate effects of the ionizing radiation can be determined by comparing pre- and post-irradiation voltage shifts, ΔVot and ΔVit. This test method provides a means for evaluation of the ionizing radiation response of MOSFETs and isolation parasitic MOSFETs.5.2 The measured voltage shifts, ΔVot and ΔVit, can provide a measure of the effectiveness of processing variations on the ionizing radiation response.5.3 This technique can be used to monitor the total-dose response of a process technology.1.1 This test method covers the use of the subthreshold charge separation technique for analysis of ionizing radiation degradation of a gate dielectric in a metal-oxide-semiconductor-field-effect transistor (MOSFET) and an isolation dielectric in a parasitic MOSFET.2,3,4 The subthreshold technique is used to separate the ionizing radiation-induced inversion voltage shift, ΔVINV into voltage shifts due to oxide trapped charge, ΔVot and interface traps, ΔV it. This technique uses the pre- and post-irradiation drain to source current versus gate voltage characteristics in the MOSFET subthreshold region.1.2 Procedures are given for measuring the MOSFET subthreshold current-voltage characteristics and for the calculation of results.1.3 The application of this test method requires the MOSFET to have a substrate (body) contact.1.4 Both pre- and post-irradiation MOSFET subthreshold source or drain curves must follow an exponential dependence on gate voltage for a minimum of two decades of current.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This guide is one of a set of guides and practices that provide recommendations for properly implementing dosimetry in radiation processing. In order to understand and effectively use this and other dosimetry standards, consider first “Practice for Dosimetry in Radiation Processing,” ASTM/ISO 52628, which describes the basic requirements that apply when making absorbed dose measurements in accordance with the ASTM E61 series of dosimetry standards. In addition, ASTM/ISO 52628 provides guidance on the selection of dosimetry systems and directs the user to other standards that provide information on individual dosimetry systems, calibration methods, uncertainty estimation and radiation processing applications.4.2 Radiation processing is carried out under fixed path conditions where (a) a process load is automatically moved through the radiation field by mechanical means or (b) a process load is irradiated statically by manually placing product at predetermined positions before the process is started. In both cases the process is controlled in such a manner that the process load position(s) and orientation(s) are reproducible within specified limits.NOTE 2: Static irradiation encompasses irradiation of the process load using either manual rotation, no rotation or automated rotation.4.3 Some radiation processing facilities that utilize a fixed conveyor path for routine processing may also characterize a region within the radiation field for static radiation processing, sometimes referred to as “Off Carrier” processing.4.4 Many radiation processing applications require a minimum absorbed dose (to achieve a desired effect or to fulfill a legal requirement), and a maximum absorbed dose (to ensure that the product, material or substance still meets functional specifications or to fulfill a legal requirement).4.5 Information from the dose mapping is used to:4.5.1 Characterize the radiation process and assess the reproducibility of absorbed-dose values, which may be used as part of operational qualification and performance qualification.4.5.2 Determine the spatial distribution of absorbed doses and the zone(s) of maximum and minimum absorbed doses throughout a process load, which may consist of an actual or simulated product.4.5.3 Establish the relationship between the dose at a routine monitoring position and the dose within the minimum and maximum dose zones established for a process load.4.5.4 Verify mathematical dose calculation methods. See ASTM Guide E2232.4.5.5 Determine the effect of process interruptions on the distribution of absorbed dose and the magnitude of the minimum and maximum doses.4.5.6 Assess the impact on the distribution of absorbed dose and the magnitude of the minimum and maximum doses resulting from the transition from one process load to another where changes, for example, in product density or product loading pattern may occur.1.1 This document provides guidance in determining absorbed-dose distributions (mapping) in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities.NOTE 1: For irradiation of food and the radiation sterilization of health care products, specific ISO and ISO/ASTM standards containing dose mapping requirements exist. See ISO/ASTM Practices 51608, 51649, 51702 and 51818 and ISO 11137-1. Regarding the radiation sterilization of health care products, in those areas covered by ISO 11137-1, that standard takes precedence.1.2 This guide is one of a set of standards that provides recommendations for properly implementing dosimetry in radiation processing. It is intended to be read in conjunction with ISO/ASTM 52628.1.3 Methods of analyzing the dose map data are described. Examples are provided of statistical methods that may be used to analyze dose map data.1.4 Dose mapping for bulk flow processing and fluid streams is not discussed.1.5 Dosimetry is an element of a total quality management system for an irradiation facility. Other controls besides dosimetry may be required for specific applications such as medical device sterilization and food preservation.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

AbstractThese methods cover general procedures for the calibration of radiation detectors and the analysis of radionuclides. For each individual radionuclide, one or more of these methods may apply. These methods are concerned only with specific radionuclide measurements. The chemical and physical properties of the radionuclides are beyond the scope of this standard. Among the measurement standards discussed are: the calibration and usage of germanium detectors, scintillation detector systems, scintillation detectors for simple and complex spectra, and counting methods such as beta particle counting, aluminum absorption curve, alpha particle counting, and liquid scintillation counting. For each of the methods, the scope, apparatus used, summary of methods, preparation of apparatus, calibration procedure, measurement of radionuclide, performance testing, sources of uncertainty, precautions and tests, and calculations are detailed.1.1 This guide covers general procedures for the calibration of radiation detectors and measurement for radiation metrology for reactor dosimetry. For any particular radionuclide, one or more of these methods may apply.1.2 These techniques are concerned only with specific radionuclide measurements. The chemical and physical properties of the radionuclides are not within the scope of this standard.1.3 E3376, Standard Practice for Calibration and Usage of Germanium Detectors in Radiation Metrology for Reactor Dosimetry, was previously in Guide E181 and is now found in Volume 12.02 of the Annual Book of ASTM Standards. The discussion herein is not a sufficient substitute for the full standard. This guide is specifically NOT to be used as a direct reference to Practice E3376. Only the standard listed provides sufficient information to serve as a reference.1.4 Additional information on the setup, calibration, and quality control for radiometric detectors and measurements is given in Guide C1402 and Practice D7282.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM E2628-09e1 Practice for Dosimetry in Radiation Processing (Withdrawn 2014) Withdrawn, Replaced 发布日期 :  1970-01-01 实施日期 : 

Radiation processing of articles in both commercial and research applications may be carried out for a number of purposes. These include, for example, sterilization of health care products, reduction of the microbial populations in foods and modification of polymers. The radiations used may be accelerated electrons, gamma-radiation from radionuclide sources such as cobalt-60, or X-radiation.To demonstrate control of the radiation process, the absorbed dose must be measured using a dosimetry system, the calibration of which, is traceable to appropriate national or international standards. The radiation-induced change in the dosimeter is evaluated and related to absorbed dose through calibration. Dose measurements required for particular processes are described in other standards referenced in this practice.1.1 This practice describes the basic requirements that apply when making absorbed dose measurements in accordance with the ASTM E10.01 series of dosimetry standards. In addition, it provides guidance on the selection of dosimetry systems and directs the user to other standards that provide specific information on individual dosimetry systems, calibration methods, uncertainty estimation and radiation processing applications.1.2 This practice applies to dosimetry for radiation processing applications using electrons or photons (gamma- or X-radiation).1.3 This practice addresses the minimum requirements of a measurement management system, but does not include general quality system requirements.1.4 This practice does not address personnel dosimetry or medical dosimetry.1.5 This practice does not apply to primary standard dosimetry systems.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

3.1 The purpose of this standard is to facilitate communication and promote common understanding within the professionals in radiation processing research and industry.3.2 Unambiguous communication of concepts is crucial taking into account the relevant implications that may arise from misunderstandings with regard to equipment and materials involved in the standards dealing with any subject regarding radiation processing activities. Concepts dealing with dosimetry related to radiation processing and procedures for preparation, testing, and using dosimetry systems to determine the absorbed dose are present in all standards developed by E61 and ISO/TC85/WG3 and need to be designated by common terms and described by harmonized definitions in order to avoid misunderstandings.1.1 This terminology standard lists terms and definitions related to radiation processing concepts, especially radiation dose measurements. Use of this standard, and the common terminology, will foster clearer communication, and remove ambiguity.1.2 The use of ionizing radiation for the treatment of commercial products such as the sterilization of medical devices, the reduction of microbial contamination in food or the modification of polymers is referred to as radiation processing. The types of radiation used may be gamma radiation (typically from cobalt-60 sources), X-radiation or accelerated electrons.1.3 This standard provides terms and definitions for dosimetry for radiation processing concepts dealing with procedures related to operational qualification, performance qualification, and routine processing that may influence absorbed dose in the products, and types of dosimetry systems that may be used during calibration or on a routine basis as part of quality assurance in commercial radiation processing of products.1.4 When selecting terms and definitions, special care has been taken to include the terms that need to be defined, that is to say, either because the definitions are essential to the correct understanding of the corresponding concepts or because some specific ambiguities need to be addressed.1.5 The “Discussion” appended to certain definitions offers clarification or examples to facilitate understanding of the concepts described. In certain cases, miscellaneous information is also included, for example, the units in which a quantity is normally measured, recommended parameter values, references, etc.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Electronic circuits used in space, military, and nuclear power systems may be exposed to various levels of ionizing radiation. It is essential for the design and fabrication of such circuits that test methods be available that can determine the vulnerability or hardness (measure of nonvulnerability) of components to be used in such systems.5.2 Some manufacturers currently are selling semiconductor parts with guaranteed hardness ratings. Use of this guide provides a basis for standardized qualification and acceptance testing.1.1 This guide presents background and guidelines for establishing an appropriate sequence of tests and data analysis procedures for determining the ionizing radiation (total dose) hardness of microelectronic devices for dose rates below 300 rd(SiO2)/s. These tests and analysis will be appropriate to assist in the determination of the ability of the devices under test to meet specific hardness requirements or to evaluate the parts for use in a range of radiation environments.1.2 The methods and guidelines presented will be applicable to characterization, qualification, and lot acceptance of silicon-based MOS and bipolar discrete devices and integrated circuits. They will be appropriate for treatment of the effects of electron and photon irradiation.1.3 This guide provides a framework for choosing a test sequence based on general characteristics of the parts to be tested and the radiation hardness requirements or goals for these parts.1.4 This guide provides for tradeoffs between minimizing the conservative nature of the testing method and minimizing the required testing effort.1.5 Determination of an effective and economical hardness test typically will require several kinds of decisions. A partial enumeration of the decisions that typically must be made is as follows:1.5.1 Determination of the Need to Perform Device Characterization—For some cases it may be more appropriate to adopt some kind of worst case testing scheme that does not require device characterization. For other cases it may be most effective to determine the effect of dose-rate on the radiation sensitivity of a device. As necessary, the appropriate level of detail of such a characterization also must be determined.1.5.2 Determination of an Effective Strategy for Minimizing the Effects of Irradiation Dose Rate on the Test Result—The results of radiation testing on some types of devices are relatively insensitive to the dose rate of the radiation applied in the test. In contrast, many MOS devices and some bipolar devices have a significant sensitivity to dose rate. Several different strategies for managing the dose rate sensitivity of test results will be discussed.1.5.3 Choice of an Effective Test Methodology—The selection of effective test methodologies will be discussed.1.6 Low Dose Requirements—Hardness testing of MOS and bipolar microelectronic devices for the purpose of qualification or lot acceptance is not necessary when the required hardness is 100 rd(SiO2) or lower.1.7 Sources—This guide will cover effects due to device testing using irradiation from photon sources, such as  60Co γ irradiators,   137Cs γ irradiators, and low energy (approximately 10 keV) X-ray sources. Other sources of test radiation such as linacs, Van de Graaff sources, Dymnamitrons, SEMs, and flash X-ray sources occasionally are used but are outside the scope of this guide.1.8 Displacement damage effects are outside the scope of this guide, as well.1.9 The values stated in SI units are to be regarded as the standard.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

4.1 Use as an Analytical Tool—Mathematical methods provide an analytical tool to be employed for many applications related to absorbed dose determinations in radiation processing. Mathematical calculations may not be used as a substitute for routine dosimetry in some applications (for example, medical device sterilization, food irradiation).4.2 Dose Calculation—Absorbed-dose calculations may be performed for a variety of photon/electron environments and irradiator geometries.4.3 Evaluate Process Effectiveness—Mathematical models may be used to evaluate the impact of changes in product composition, loading configuration, and irradiator design on dose distribution.4.4 Complement or Supplement to Dosimetry—Dose calculations may be used to establish a detailed understanding of dose distribution, providing a spatial resolution not obtainable through measurement. Calculations may be used to reduce the number of dosimeters required to characterize a procedure or process (for example, dose mapping).4.5 Alternative to Dosimetry—Dose calculations may be used when dosimetry is impractical (for example, granular materials, materials with complex geometries, material contained in a package where dosimetry is not practical or possible).4.6 Facility Design—Dose calculations are often used in the design of a new irradiator and can be used to help optimize dose distribution in an existing facility or radiation process. The use of modeling in irradiator design can be found in Refs (2-7).4.7 Validation—The validation of the model should be done through comparison with reliable and traceable dosimetric measurements. The purpose of validation is to demonstrate that the mathematical method makes reliable predictions of dose and other transport quantities. Validation compares predictions or theory to the results of an appropriate experiment. The degree of validation is commensurate with the application. Guidance is given in the documents referenced in Annex A2.4.8 Verification—Verification is the confirmation of the mathematical correctness of a computer implementation of a mathematical method. This can be done, for example, by comparing numerical results with known analytic solutions or with other computer codes that have been previously verified. Verification should be done to ensure that the simulation is appropriate for the intended application. Refer to 3.1.24.NOTE 2: Certain applications of the mathematical model deal with Operational Qualification (OQ), Performance Qualification (PQ) and process control in radiation processing such as the sterilization of healthcare products. The application and use of the mathematical model in these applications may have to meet regulatory requirements. Refer to Section 6 for prerequisites for application of a mathematical method and Section 8 for requirements before routine use of the mathematical method.4.9 Uncertainty—An absorbed dose prediction should be accompanied by an estimate of overall uncertainty, as it is with absorbed-dose measurement (refer to ISO/ASTM 51707 and JCGM100:2008 and JCGM200:2012). In many cases, absorbed-dose measurement helps to establish the uncertainty in the dose calculation.4.10 This guide should not be used as the only reference in the selection and use of mathematical models. The user is encouraged to contact individuals who are experienced in mathematical modelling and to read the relevant publications in order to select the best tool for their application. Radiation processing is an evolving field and the references cited in the annotated examples of Annex A6 are representative of the various published applications. Where a method is validated with dosimetry, it becomes a benchmark for that particular application.1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose.1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document.1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV.1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods.1.5 This guide is limited to the use of general purpose software packages for the calculation of the transport of charged or uncharged particles and photons, or both, from various types of sources of ionizing radiation. This standard is limited to the use of these software packages or other mathematical methods for the determination of spatial dose distributions for photons emitted following the decay of 137Cs or 60Co, for energetic electrons from particle accelerators, or for X-rays generated by electron accelerators.1.6 This guide assists the user in determining if mathematical methods are a useful tool. This guide may assist the user in selecting an appropriate method for calculating absorbed dose. The user must determine whether any of these mathematical methods are appropriate for the solution to their specific application and what, if any, software to apply.NOTE 1: The user is urged to apply these predictive techniques while being aware of the need for experience and also the inherent limitations of both the method and the available software. Information pertaining to availability and updates to codes for modeling radiation transport, courses, workshops and meetings can be found in Annex A1. For a basic understanding of radiation physics and a brief overview of method selection, refer to Annex A3.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is designed to provide a uniform test to assess the suitability of coatings, used in nuclear power facilities, under radiation exposure for the life of the facilities, including radiation during a DBA (Coating Service Level I areas only). Specific plant radiation exposure may exceed or be less than the amount specified in 7.2 of this standard. If required by the licensee design basis, the gamma dose used may exceed the actual anticipated plant gamma dose to account for beta dose. Coatings in Level II and III areas (outside primary containment) are expected to be exposed to lower accumulated radiation doses.1.1 This test method covers a standard procedure for evaluating the lifetime radiation tolerance of coatings to be used in nuclear power plants. This test method is applicable to Coating Service Levels I, II, and III.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Various products and materials are routinely irradiated at pre-determined doses at electron beam facilities to preserve or modify their characteristics. Dosimetry requirements may vary depending on the radiation process and end use of the product. A partial list of processes where dosimetry may be used is given below.4.1.1 Polymerization of monomers and grafting of monomers onto polymers,4.1.2 Cross-linking or degradation of polymers,4.1.3 Curing of composite materials,4.1.4 Sterilization of health care products,4.1.5 Disinfection of consumer products,4.1.6 Food irradiation (parasite and pathogen control, insect disinfestation, and shelf-life extension),4.1.7 Control of pathogens and toxins in drinking water,4.1.8 Control of pathogens and toxins in liquid or solid waste,4.1.9 Modification of characteristics of semiconductor devices,4.1.10 Color enhancement of gemstones and other materials, and4.1.11 Research on radiation effects on materials.4.2 Dosimetry is used as a means of monitoring the irradiation process.NOTE 2: Dosimetry with measurement traceability and known uncertainty is required for regulated radiation processes such as sterilization of health care products (see ISO 11137-1 and Refs (1-36)) and preservation of food (see ISO 14470 and Ref (4)). It may be less important for other processes, such as polymer modification, which may be evaluated by changes in the physical and chemical properties of the irradiated materials. Nevertheless, routine dosimetry may be used to monitor the reproducibility of the treatment process.NOTE 3: Measured dose is often characterized as absorbed dose in water. Materials commonly found in single-use disposable medical devices and food are approximately equivalent to water in the absorption of ionizing radiation. Absorbed dose in materials other than water may be determined by applying conversion factors (5, 6).4.3 An irradiation process usually requires a minimum absorbed dose to achieve the desired effect. There may also be a maximum dose limit that the product can tolerate while still meeting its functional or regulatory specifications. Dosimetry is essential, since it is used to determine both of these limits during the research and development phase, and also to confirm that the product is routinely irradiated within these limits.4.4 The dose distribution within the product depends on process load characteristics, irradiation conditions, and operating parameters.4.5 Dosimetry systems must be calibrated with traceability to national or international standards and the measurement uncertainty must be known.4.6 Before a radiation facility is used, it must be characterized to determine its effectiveness in reproducibly delivering known, controllable doses. This involves testing and calibrating the process equipment, and dosimetry system.4.7 Before a radiation process is commenced it must be validated. This involves execution of Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ), based on which process parameters are established that will ensure that product is irradiated within specified limits.4.8 To ensure consistent and reproducible dose delivery in a validated process, routine process control requires that documented procedures are established for activities to be carried out before, during and after irradiation, such as for ensuring consistent product loading configuration and for monitoring of critical operating parameters and routine dosimetry.1.1 This practice outlines dosimetric procedures to be followed in installation qualification (IQ), operational qualification (OQ) and performance qualifications (PQ), and routine processing at electron beam facilities.1.2 The electron beam energy range covered in this practice is between 300 keV and 25 MeV, although there are some discussions for other energies.1.3 Dosimetry is only one component of a total quality assurance program for adherence to good manufacturing practices used in radiation processing applications. Other measures besides dosimetry may be required for specific applications such as health care product sterilization and food preservation.1.4 Specific standards exist for the radiation sterilization of health care products and the irradiation of food. For the radiation sterilization of health care products, see ISO 11137-1 (Requirements) and ISO 11137-3 (Guidance on dosimetric aspects). For irradiation of food, see ISO 14470. In those areas covered by these standards, they take precedence. Information about effective or regulatory dose limits for food products is not within the scope of this practice (see ASTM Guides F1355, F1356, F1736, and F1885).1.5 This document is one of a set of standards that provides recommendations for properly implementing and utilizing dosimetry in radiation processing. It is intended to be read in conjunction with ISO/ASTM 52628, “Practice for Dosimetry in Radiation Processing”.NOTE 1: For guidance in the calibration of routine dosimetry systems, see ISO/ASTM Practice 51261. For further guidance in the use of specific dosimetry systems, see relevant ISO/ASTM Practices. For discussion of radiation dosimetry for pulsed radiation, see ICRU Report 34.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

定价: 1011元 / 折扣价: 860 加购物车

在线阅读 收 藏

4.1 Various products and materials routinely are irradiated at predetermined doses in gamma irradiation facilities to reduce their microbial population or to modify their characteristics. Dosimetry requirements may vary depending upon the irradiation application and end use of the product. Some examples of irradiation applications where dosimetry may be used are:4.1.1 Sterilization of medical devices,4.1.2 Treatment of food for the purpose of parasite and pathogen control, insect disinfestation, and shelf life extension,4.1.3 Disinfection of consumer products,4.1.4 Cross-linking or degradation of polymers and elastomers,4.1.5 Polymerization of monomers and grafting of monomers onto polymers,4.1.6 Enhancement of color in gemstones and other materials,4.1.7 Modification of characteristics of semiconductor devices, and4.1.8 Research on materials effects.NOTE 3: Dosimetry is required for regulated irradiation processes such as sterilization of medical devices and the treatment of food. It may be less important for other industrial processes, for example, polymer modification, which can be evaluated by changes in the physical and chemical properties of the irradiated materials.4.2 An irradiation process usually requires a minimum absorbed dose to achieve the intended effect. There also may be a maximum absorbed dose that the product can tolerate and still meet its functional or regulatory specifications. Dosimetry is essential to the irradiation process since it is used to determine both of these limits and to confirm that the product is routinely irradiated within these limits.4.3 The absorbed-dose distribution within the product depends on the overall product dimensions and mass, irradiation geometry, and source activity distribution.4.4 Before an irradiation facility can be used, it must be qualified to determine its effectiveness in reproducibly delivering known, controllable absorbed doses. This involves testing the process equipment, calibrating the equipment and dosimetry system, and characterizing the magnitude, distribution and reproducibility of the absorbed dose delivered by the irradiator for a range of product densities.4.5 To ensure consistent and reproducible dose delivery in a qualified process, routine process control requires documented product handling procedures before and after irradiation, consistent product loading configuration, control and monitoring of critical process parameters, routine product dosimetry and documentation of the required activities.1.1 This practice outlines the installation qualification program for an irradiator and the dosimetric procedures to be followed during operational qualification, performance qualification, and routine processing in facilities that process products with ionizing radiation from radionuclide gamma sources to ensure that product has been treated within a predetermined range of absorbed dose. Other procedures related to operational qualification, performance qualification, and routine processing that may influence absorbed dose in the product are also discussed.NOTE 1: Dosimetry is only one component of a total quality assurance program for adherence to good manufacturing practices used in radiation processing applications.NOTE 2: ISO/ASTM Practices 51818 and 51649 describe dosimetric procedures for low and high enery electron beam facilities for radiation processing and ISO/ASTM Practice 51608 describes procedures for X-ray (bremsstrahlung) facilities for radiation processing.1.2 For the radiation sterilization of health care products, see ISO 11137-1. In those areas covered by ISO 11137-1, that standard takes precedence.1.3 This document is one of a set of standards that provides recommendations for properly implementing and utilizing dosimetry in radiation processing. It is intended to be read in conjunction with ASTM Practice E2628.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 506元 / 折扣价: 431 加购物车

在线阅读 收 藏

4.1 All measurements, including dose measurements, have an associated uncertainty. The magnitude of the measurement uncertainty is important for assessing the quality of the results of the measurement system.4.2 Information on the range of achievable uncertainty values for specific dosimetry systems is given in the ISO/ASTM standards for the specific dosimetry systems. While the uncertainty values given in specific dosimetry standards are achievable, it should be noted that both smaller and larger uncertainty values might be obtained depending on measurement conditions and instrumentation. For more information see also ISO/ASTM 52628.4.3 This guide uses the methodology adopted by the GUM for estimating uncertainties in measurements (see 2.4). Therefore, components of uncertainty are evaluated as either Type A uncertainty or Type B uncertainty.4.4 Quantifying individual components of uncertainty may assist the user in identifying actions to reduce the measurement uncertainty.4.5 Periodically, the uncertainty should be reassessed to confirm the existing estimate. Should changes occur that could influence the existing component estimates or result in the addition of new components of uncertainty, a new estimate of uncertainty should be established.4.6 Although this guide provides a framework for assessing uncertainty, it cannot substitute for critical thinking, intellectual honesty, and professional skill. The evaluation of uncertainty is neither a routine task nor a purely mathematical one; it depends on detailed knowledge of the nature of the measurand and of the measurement method and procedure used. The quality and utility of the uncertainty quoted for the result of a measurement therefore ultimately depends on the understanding, critical analysis, and integrity of those who contribute to the assignment of its value (JCGM 100:2008).1.1 This standard provides guidance on the use of concepts described in the JCGM Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement (GUM) to estimate the uncertainties in the measurement of absorbed dose in radiation processing.1.2 Methods are given for identifying, evaluating and estimating the components of measurement uncertainty associated with the use of dosimetry systems and for calculating combined standard measurement uncertainty and expanded (overall) uncertainty of dose measurements based on the GUM methodology.1.3 Examples are given on how to develop a measurement uncertainty budget and a statement of uncertainty.1.4 This document is one of a set of standards that provides recommendations for properly implementing dosimetry in radiation processing, and provides guidance for achieving compliance with the requirements of ISO/ASTM 52628 related to the evaluation and documentation of the uncertainties associated with measurements made with a dosimetry system. It is intended to be read in conjunction with ISO/ASTM 52628, ISO/ASTM 51261 and ISO/ASTM 52701.1.5 This guide does not address the establishment of process specifications or conformity assessment.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏
66 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页