微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Refer to Guide D8509.1.1 This practice provides instructions for modifying static open-hole tensile and compressive strength test methods to determine the fatigue behavior of composite materials subjected to cyclic tensile or compressive forces, or both. The composite material forms are limited to continuous-fiber reinforced polymer matrix composites in which the laminate is both symmetric and balanced with respect to the test direction. The range of acceptable test laminates and thicknesses are described in 8.2.1.2 This practice supplements Test Methods D5766/D5766M and D6484/D6484M with provisions for testing specimens under cyclic loading. Several important test specimen parameters, for example fatigue force (stress) ratio, are not mandated by this practice; however, repeatable results require that these parameters be specified and reported.1.3 This practice is limited to test specimens subjected to constant amplitude uniaxial loading, where the machine is controlled so that the test specimen is subjected to repetitive constant amplitude force (stress) cycles. Either engineering stress or applied force may be used as a constant amplitude fatigue variable. The repetitive loadings may be tensile, compressive, or reversed, depending upon the test specimen and procedure utilized.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4.1 Within the text the inch-pound units are shown in brackets.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 The purpose of this guide is to provide remediation managers and spill response teams with guidance on bioremediation.3.2 Bioremediation is one of many available tools and may not be applicable to all situations. This guide can be used in conjunction with other ASTM guides addressing oil spill response operations.1.1 The goal of this guide is to provide recommendations for the use of biodegradation enhancing agents for remediating oil spills in terrestrial environments.1.2 This is a general guide only, assuming the bioremediation agent to be safe, effective, available, and applied in accordance with both manufacturers' recommendations and relevant environmental regulations. As referred to in this guide, oil includes crude and refined petroleum products.1.3 This guide addresses the application of bioremediation agents alone or in conjunction with other technologies, following spills on surface terrestrial environments.1.4 This guide does not consider the ecological effects of bioremediation agents.1.5 This guide applies to all terrestrial environments. Specifically, it addresses various technological applications used in these environments.1.6 In making bioremediation-use decisions, appropriate government authorities must be consulted as required by law.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. In addition, it is the responsibility of the user to ensure that such activity takes place under the control and direction of a qualified person with full knowledge of any potential or appropriate safety and health protocols.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 It is essential for response agency personnel to plan, develop, implement, and train on standardized guidelines that encompass policy, strategy, operations, and tactical decisions prior to responding to a radiological or nuclear incident. Use of this practice is recommended for all levels of the response structure.5.2 Documents developed from this practice should be reviewed and revised as necessary on a two-year cycle or according to each jurisdiction’s normal practices. The review should consider new and updated requirements and guidance, technologies, and other information or equipment that might have a significant impact on the management and outcome of radiological incidents.1.1 This practice provides decision-making considerations for response to both accidental and intentional incidents that involve radioactive material. It provides information and guidance for what to include in response planning and what activities to conduct during a response. It also encompasses the practices to respond to any situation complicated by radiation in conjunction with the associated guidance for the specific type of incident.1.1.1 The intended audience for the standard includes planners as well as emergency responders, incident commanders, and other emergency workers who should be protected from radiation.1.1.2 The scope of this practice applies to all types of radiological emergencies. While it does not fully consider response to an NPP accident,3 an explosive RDD, or nuclear detonation, detailed guidance to respond to such incidents is provided in other documents, such as those cited in the introduction. With respect to the guidance documents, this practice provides the general principles that apply to the broad range of incidents and associated planning goals but relies on the AHJ to apply and tailor their response planning based on those documents as well as the limitation of the personnel and equipment resources in the jurisdiction. In addition, the AHJ should use those documents to identify improvements to planning and resources to be better prepared for the more complex emergencies.1.1.3 This practice does not expressly address emergency response to contamination of food or water supplies.1.1.4 The Emergency Response Guide (ERG) published by the Department of Transportation provides valuable information for response to traffic accidents involving radioactive materials. For other radiological or nuclear incidents, however, the ERG may not provide adequate information on appropriate protective measures and should not be the sole resource used.1.2 This practice applies to those emergency response agencies that have a role in the response to an accidental or intentional radiological or nuclear incident. It should be used by emergency response organizations such as law enforcement, fire service, emergency medical services, and emergency management.1.3 This practice assumes that implementation begins with the recognition of a radiological or nuclear incident and ends when emergency response actions cease or the response is supported by specialized regional, state, or federal response assets.1.4 AHJs using this practice should identify hazards, develop a plan, acquire and track equipment, and provide training consistent with the descriptions provided in Section 6.1.5 While response to radiological hazards is the focus of this practice, responders must consider all hazards during a response; it is possible that non-radiological hazards may present a greater danger at an incident, particularly in incidents with wide area dispersion.1.5.1 This practice does not fully address assessing the risks from airborne radioactivity. Equipment to determine this potential hazard is not widely available in emergency responder communities. Like other responses to unknown hazards, respiratory protection commonly used by responders is required until a complete hazard identification assessment is complete.1.6 This practice is divided into the following sections:Section Title1 2 Referenced Documents3 Terminology4 Summary of Practice5 6 Prerequisites for Radiological or Nuclear Emergency Response7 Nuclear Detonation Response8 Radiological Emergency ResponseAppendix X1 Operational Guidance for Responding to Radiological or Nuclear Incidents, or both, and EmergenciesAppendix X2 Summary of Blast and Radiation Zones Following a Nuclear DetonationAppendix X3 Practicing ALARA Using Time, Distance, and Shielding: Determining Radiological DoseAppendix X4 Radiological Emergency Response GuidelinesAppendix X5 Emergency Response Checklist for Radiological IncidentsAppendix X6 Radiation Detection InstrumentsAppendix X7 Example Radiation Safety ProceduresAppendix X8 Sample Radiation Safety ProceduresAppendix X9 Training ResourcesAppendix X10 Radiation Units, Conversions, and AbbreviationsN/A ReferencesN/A Bibliography1.7 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

4.1 These practices provide a means for evaluating traveled surface-roughness characteristics directly from a measured profile. The calculated values represent vehicular response to traveled surface roughness.4.2 These practices provide a means of calibrating response-type road-roughness measuring equipment.41.1 These practices cover the calculation of vehicular response to longitudinal profiles of traveled surface roughness.1.2 These practices utilize computer simulations to obtain two vehicle responses: (1) axle-body (sprung mass) motion, or (2) body (sprung mass) acceleration, as a function of time or distance.1.3 These practices present standard vehicle simulations (quarter, half, and full car) for use in the calculations.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These practices provide a means for evaluating truck ride quality and pavement loading exerted by truck tires.1.1 These practices cover the calculation of truck response to longitudinal profiles of traveled surface roughness.1.2 These practices utilize computer simulations to obtain two truck responses including: sprung and unsprung mass vertical displacement, velocity, and acceleration; and sprung mass pitch angular displacement, velocity, and acceleration.1.3 These practices present standard truck simulations (quarter truck, half-single unit truck, and half-tractor semitrailer) for use in the calculations.1.4 The values stated in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide covers recommendations for the use of chemical dispersants to assist in the control of oil spills. This guide is written with the goal of minimizing the environmental impacts of oil spills; this goal is the basis upon which recommendations are made. Aesthetic and socioeconomic factors are not considered; although, these and other factors are often important in spill response. 1.2 Each on-scene coordinator has available several means of control or cleanup of spilled oil. In this guide, use of chemical dispersants is not to be considered as a last resort after other methods have failed. Chemical dispersants are to be given equal consideration with other spill countermeasures. 1.3 This is a general guide only assuming the oil to be dispersable and the dispersant to be effective, available, applied correctly and in compliance with relevant government regulations. Oil, as used in this guide, includes crude oils and fuel oils (No. 1 through No. 6). Differences between individual dispersants or between different oils or products are not considered. 1.4 This guide covers one type of habitat, sandy beaches or marshes. Other guides, similar to this one, cover habitats such as rocky shores and marshes. The use of dispersants is considered primarily to protect such habitats from impact (or minimize impacts) and also to clean them after the spill takes place. 1.5 This guide applies to marine and estuarine environments, but not to freshwater environments. 1.6 In making dispersant-use decisions, appropriate government authorities should be consulted as required by law. 1.7 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide covers recommendations for the use of chemical dispersants to assist in the control of oil spills. This guide is written with the goal of minimizing the environmental impacts of oil spills; this goal is the basis upon which recommendations are made. Aesthetic and socioeconomic factors are not considered, although these and other factors are often important in spill response. 1.2 Each on-scene coordinator has available several means of control or cleanup of spilled oil. In this guide, use of chemical dispersants is not to be considered as a last report after other methods have failed. Chemical dispersants are to be given equal consideration with other spill countermeasures. 1.3 This is a general guide only assuming the oil to be dispersable and the dispersant to be effective, available, applied correctly and in compliance with relevant government regulations. Oil, as used in this guide, includes crude oils and fuel oils (No. 1 through No. 6). Differences between individual dispersants or between different oils or products are not considered. 1.4 This guide covers one type of habitat, gravel or cobble beaches. Other guides, similar to this one, cover habitats such as rocky shores, marshes. The use of dispersants is considered primarily to protect such habitats from impact (or minimize impacts) and also to clean them after the spill takes place. 1.5 This guide applies to marine and estuarine environments, but not to freshwater environments. 1.6 In making dispersant-use decisions, appropriate government authorities should be consulted as required by law. 1.7 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Boom sections are frequently combined into assemblages hundreds of meters in length prior to towing through the water to a spill site. The friction of moving long boom assemblages through the water can impose high tensile stresses on boom segments near the tow vessel.5.2 Tensile forces are also set up in a boom when it is being towed in a sweeping mode. The magnitude of this tensile force can be related to the immersed depth of the boom, the length of boom involved, the width of the bight formed by the two towing vessels, and the speed of movement.NOTE 1: When the towing speed exceeds about 1 knot (0.5 m/s), substantial oil will be lost under the boom.5.3 Knowledge of maximum and allowable working tensile stresses will help in the selection of boom for a given application and will permit specification of safe towing and anchoring conditions for any given boom.1.1 These test methods cover static laboratory tests of the strength of oil spill response boom under tensile loading.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice can be used for a range of purposes including incident replication, development of improved arc rated protective products, and the determination of the response characteristics and design integrity of new or used arc rated finished products intended for use as protection for workers exposed to electric arcs.5.1.1 In-service garments can have very different wash and wear histories. Caution must be used when applying test results from a particular used garment. Factors to consider include the garments’ wear histories, work environments, and tasks for which the garments were worn; the methods and facilities for garment maintenance; the number of launderings or processings the garments have been subjected to; and other factors that could impact the protective performance of different garments. Test results from specific used garments should be considered only an approximation of results that might be obtained from other used garments of the same type.5.1.2 When using the practice for evaluating flame resistance, great care should be taken since ignition by electric arc is a statistical phenomenon. An exposure of 20 cal/cm2 has been consistently shown to evaluate most ignitable materials but some may require higher energy to reach the breakopen point of the fabric depending on coatings or specific fiber types. Consider using a vertical flame test such as Test Method D6413 to evaluate for ignition and use this practice for illustration.5.2 This practice maintains the specimen in a static, vertical position and does not involve movement except that resulting from the exposure.1.1 This practice identifies protocols for use in conducting arc testing on finished products intended for use as thermal protection by workers who may be exposed to electric arc hazards.1.1.1 The practice is also used for other components which can be exposed to electric arc, but which do not require an arc rating.1.1.1.1 If items are tested and they do not meet the appropriate standard, it is the responsibility of the specimen submitter to provide this information for indication in the test report.1.2 Arc Rated protective items are typically tested using this practice to evaluate the performance of the interface area between the product and the other arc flash PPE or to evaluate zippers and other findings.1.3 This practice does not establish an arc rating for any product. Other ASTM test methods are to be used when applicable such as ASTM F1959/F1959M, F2178, and F2675.1.4 This practice is not intended to produce an arc rating and does not replicate in all types of arc exposures.1.5 This practice is used with the following standards:1.5.1 Protective fabric materials receive arc ratings from Test Method F1959/F1959M.1.5.2 Face protective products receive arc ratings from Test Method F2178.1.5.3 Gloves receive arc ratings from Test Method F2675.1.5.4 Rainwear materials, findings and closures are specified by Specification F1891.1.5.5 Garments are specified by Specification F1506.1.6 The test specimens used in this practice are typically in the form of arc-rated finished products. These arc-rated finished products may include, but are not limited to, single layer garments, multi-layer garments or ensembles, cooling vests, gloves, sleeves, chaps, rainwear, balaclavas, faceshields, and hood assemblies with hood shield windows. Non-arc rated finished products may be included when part of a flame-resistant system, or for evaluating heat transmission through the finished product for incident reenactment, or for evaluation of products needed but not available as arc rated (such as respirators, etc.)1.7 The arc rated finished product specimens are new products as sold or products which have been used for the intended purpose for a designated time.1.8 This practice is used to determine the response characteristics or design integrity of arc-rated materials, products, or assemblies in the form of finished products when exposed to radiant and convective energy generated by an electric arc under controlled laboratory conditions.1.9 This practice can be used to determine the integrity of closures and seams in arc exposures, the protective performance of arc-rated products in areas where garment overlap occurs or where heraldry reflective trim or other items are used, and response characteristics such as afterflame time, melting, dripping, deformation, shrinkage, ignition, or other damage, or combination thereof, of fabrics, systems of fabrics, flammable undergarments when included as part of a system, sewing thread, findings, and closures.1.10 This practice can be used for incident reenactment, training demonstrations, and material/design comparisons.1.11 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.12 This standard shall not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire assessment, which takes into account all of the factors, which are pertinent to an assessment of the fire hazard of a particular end use.1.13 This standard does not purport to describe or appraise the effect of the electric arc fragmentation explosion and subsequent molten metal splatter, which involves the pressure wave containing molten metals and possible fragments of other materials except to the extent that evidence of projectile damage is assessed and reported.1.14 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautions, see Section 7.1.15 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
169 条记录,每页 15 条,当前第 1 / 12 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页