微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM A368-95a(2019) Standard Specification for Stainless Steel Wire Strand Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers the standard for stainless steel wire strand composed of a multiplicity of round wires and suitable for use as guy wires, overhead ground wires, and similar purposes. Stranding shall be sufficiently close to ensure no appreciable reduction in diameter when stressed to the specified strength. Several types of steel are covered like Type 302, 304, 305, 316, 316Cb, or 316Ti and shall conform to the required chemical composition values in carbon, manganese, phosphorus, sulfur, silicon, chromium, nickel, molybdenum, and nitrogen. The tensile strength, based upon the nominal strand diameter and the number of wires in each strand, shall conform to the minimum values in breaking strength. The individual wires of the completed strand shall not fracture when wrapped in a close helix of at least two turns upon itself as a mandrel.1.1 This specification covers stainless steel wire strand composed of a multiplicity of round wires and suitable for use as guy wires, overhead ground wires, and similar purposes.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM A686-92(2016) Standard Specification for Tool Steel, Carbon Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers chemical, mechanical, and physical requirements for available wrought carbon tool steel products. These products, which include hot- or cold-finished bar, plate, sheet, rod, wire, or forgings, are normally fabricated into tools, dies, or fixtures. The selection of a material for a particular application will depend upon design, service conditions, and desired properties. An analysis of each heat of steel shall be made by the manufacturer to determine the percentage of the elements specified and these values shall conform to the chemical composition specified by the reference material. The hardness of the specimen after the specified heat treatment shall meet the minimum hardness value for the particular type of steel prescribed by the reference material. Rockwell C tests should be used where possible but light load tests may be necessary on thin specimens. The macrostructure of a specimen representing the entire cross-sectional area in the annealed condition shall be prepared in accordance with the reference material. It shall exhibit a structure free of excessive porosity, segregation, slag, dirt or other nonmetallic inclusions, pipes, checks, cracks, and other injurious defects.1.1 This specification covers the chemical, mechanical, and physical requirements for available wrought carbon tool steel products.1.2 These products, which include hot- or cold-finished bar, plate, sheet, rod, wire, or forgings, are normally fabricated into tools, dies, or fixtures. The selection of a material for a particular application will depend upon design, service conditions, and desired properties.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers austenitic stainless steel forgings for pressure and high temperature parts such as boilers, pressure vessels, and associated equipment. The grades covered here are F304, F304H, F304L, F304N, F304LN, F309H, F310, F310H, F316, F316H, F316L, F316N, F316LN, F321, F321H, F347, F347H, F348, F348H, FXM-19, FXM-11, and F46. Materials shall be produced by melting, forging, and rough machining, and shall be furnished by heat treatment in solution treated condition (solution annealing and quenching in water, oil, or a polymer water solution). Stainless steel specimens shall undergo heat and product analyses to evaluate the conformance of individual grades to specified elemental chemical compositions. Forgings shall also be examined for the adherence of each grade to required grain sizes and mechanical properties, which include tensile strength, yield strength, elongation, and reduction of area.1.1 This specification covers austenitic stainless steel forgings for boilers, pressure vessels, high temperature parts, and associated equipment.1.2 Supplementary requirements are provided for use when additional testing, inspection, or processing is required. In addition, supplementary requirements from Specification A788/A788M may be specified when appropriate.1.3 This specification includes the austenitic steel forgings that were a part of Specification A336/A336M.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.5 Unless the order specifies the applicable “M” specification designation, the material shall be furnished to the inch-pound units.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the requirements for wrought seamless or welded and drawn 18chromium-14nickel-2.5molybdenum stainless steel small diameter tubing for surgical implants. Manufacturing method shall be seamless or welded and drawn process. Tubing shall conform to chemical composition, dimensions, and mechanical properties of this specification. Mechanical properties include ultimate tensile strength, yield strength, and elongation. Outside and inside diameter, wall thickness, length and straightness shall conform to the permissible limits of this specification.1.1 This specification covers the requirements for wrought 18chromium-14nickel-2.5molybdenum stainless steel tubing used for the manufacture of surgical implants. Material shall conform to the applicable requirements of Specification F138 (for seamless) or Specification F139 (for welded and drawn). This specification addresses those product variables that differentiate small-diameter medical grade tubing from the bar, wire, sheet, and strip product forms covered in these specifications.1.2 This specification applies to cold finished straight length tubing with 3 mm [0.125 in.] and smaller nominal outside diameter (OD) and 0.5 mm [0.020 in.] and thinner nominal wall thickness.1.3 The specifications in 2.1 are referred to as the ASTM material standard(s) in this specification.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Inch-pound units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other and values from the two systems shall not be combined.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This guide specifies standard specification for heavy-wall carbon and alloy steel pipe made from turned and bored forgings and is intended for high-temperature service. Heat and product analysis shall be conducted on several grades of ferritic steels, wherein the material shall conform to the required chemical composition for carbon, manganese, phosphorus, sulfur, silicon, chromium, and molybdenum. The steel pipe shall conform to the required tensile properties like tensile strength, yield strength, and elongation. Required mechanical tests for the steel pipe include transverse or longitudinal tension test, flattening test, and bend test.1.1 This specification2 covers heavy-wall carbon and alloy steel pipe (Note 1) made from turned and bored forgings and is intended for high-temperature service. Pipe ordered under this specification shall be suitable for bending and other forming operations and for fusion welding. Selection will depend on design, service conditions, mechanical properties and high-temperature characteristics.NOTE 1: The use of the word “pipe” throughout the several sections of this specification is used in the broad sense and intended to mean pipe headers, or leads.NOTE 2: The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as “nominal diameter,” “size,” and “nominal size.”1.2 Several grades of ferritic steels are covered. Their compositions are given in Table 1.1.3 Supplementary requirements (S1 to S7) of an optional nature are provided. Supplementary requirements S1 to S5 call for additional tests to be made, and when desired shall be so stated in the order, together with the number of such tests required as applicable.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM A687-93 Standard Specification for High-Strength Nonheaded Steel Bolts and Studs (Withdrawn 1999) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This specification covers the chemical and mechanical requirements for quenched and tempered steel nonheaded bolts and studs with enhanced Charpy V-notch impact properties for anchorage and other purposes. The material shall be alloy steel as described in Table 1 and is limited to 5/8 to 3 in. (15.875 to 76 mm) inclusive, in nominal diameter. 1.2 This specification does not apply to mechanical expansion anchors for concrete or to powder-activated nails or studs for concrete or steel. 1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 For ferromagnetic materials, magnetic particle examination is widely specified for the detection of surface and near-surface flaws such as cracks, laps, seams, and linearly oriented nonmetallic inclusions. Such examinations are included as mandatory requirements in some forging standards such as Specifications A508/A508M and A963/A963M.5.2 Use of alternating current as the power source for magnetic particle examination imposes a significant restriction on the detection of subsurface indications, so that the procedure is essentially limited to the finding of flaws that are open to the surface. Attention therefore is drawn to the need to have the component in the finish-machined condition before conducting the magnetic particle examination.5.3 The presence of residual magnetic fields in a component may be undesirable, and an advantage of the use of an ac power source for magnetic particle examination is that an acceptable level of demagnetization can be readily achieved.1.1 This practice covers a procedure for the magnetic particle examination of steel forgings using alternating current as the power source. The procedure will produce consistent results upon which acceptance standards can be based. This practice does not contain acceptance limits or recommended quality levels.1.2 Only alternating 50–60 cycle current shall be used as the electric power source for any of the magnetizing methods.1.3 When subsurface indications are sought in forgings, then dc magnetization in accordance with Practice A275/A275M should be used.1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Unless the order specifies the applicable “M” specification designation [SI units], the inch-pound units shall be used.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification establishes the minimum requirements for coated tubular picket ornamental fence systems fabricated from black (that is, not galvanized) steel components.1.2 The requirements of this specification do not apply to vertical bar fence systems utilizing solid bar or wrought iron materials.1.3 The values stated with inch-pound units are to be regarded as standard. The SI values in parentheses are provided for information.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The primary use of these test methods is testing to determine the specified mechanical properties of steel, stainless steel, and related alloy products for the evaluation of conformance of such products to a material specification under the jurisdiction of ASTM Committee A01 and its subcommittees as designated by a purchaser in a purchase order or contract.4.1.1 These test methods may be and are used by other ASTM Committees and other standards writing bodies for the purpose of conformance testing.4.1.2 The material condition at the time of testing, sampling frequency, specimen location and orientation, reporting requirements, and other test parameters are contained in the pertinent material specification or in a general requirement specification for the particular product form.4.1.3 Some material specifications require the use of additional test methods not described herein; in such cases, the required test method is described in that material specification or by reference to another appropriate test method standard.4.2 These test methods are also suitable to be used for testing of steel, stainless steel and related alloy materials for other purposes, such as incoming material acceptance testing by the purchaser or evaluation of components after service exposure.4.2.1 As with any mechanical testing, deviations from either specification limits or expected as-manufactured properties can occur for valid reasons besides deficiency of the original as-fabricated product. These reasons include, but are not limited to: subsequent service degradation from environmental exposure (for example, temperature, corrosion); static or cyclic service stress effects, mechanically-induced damage, material inhomogeneity, anisotropic structure, natural aging of select alloys, further processing not included in the specification, sampling limitations, and measuring equipment calibration uncertainty. There is statistical variation in all aspects of mechanical testing and variations in test results from prior tests are expected. An understanding of possible reasons for deviation from specified or expected test values should be applied in interpretation of test results.1.1 These test methods2 cover procedures and definitions for the mechanical testing of steels, stainless steels, and related alloys. The various mechanical tests herein described are used to determine properties required in the product specifications. Variations in testing methods are to be avoided, and standard methods of testing are to be followed to obtain reproducible and comparable results. In those cases in which the testing requirements for certain products are unique or at variance with these general procedures, the product specification testing requirements shall control.1.2 The following mechanical tests are described:  Sections               Tension 7 to 14               Bend 15               Hardness 16                    Brinell 17                    Rockwell 18                    Portable 19               Impact 20 to 30               Keywords 321.3 Annexes covering details peculiar to certain products are appended to these test methods as follows:  Annex     Bar Products Annex A1     Tubular Products Annex A2     Fasteners Annex A3     Round Wire Products Annex A4     Significance of Notched-Bar Impact Testing Annex A5     Converting Percentage Elongation of Round Specimens to          Equivalents for Flat Specimens Annex A6     Testing Multi-Wire Strand Annex A7     Rounding of Test Data Annex A8     Methods for Testing Steel Reinforcing Bars Annex A9     Procedure for Use and Control of Heat-cycle Simulation Annex A101.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 When these test methods are referenced in a metric product specification, the yield and tensile values may be determined in inch-pound (ksi) units then converted into SI (MPa) units. The elongation determined in inch-pound gauge lengths of 2 in. or 8 in. may be reported in SI unit gauge lengths of 50 mm or 200 mm, respectively, as applicable. Conversely, when these test methods are referenced in an inch-pound product specification, the yield and tensile values may be determined in SI units then converted into inch-pound units. The elongation determined in SI unit gauge lengths of 50 mm or 200 mm may be reported in inch-pound gauge lengths of 2 in. or 8 in., respectively, as applicable.1.5.1 The specimen used to determine the original units must conform to the applicable tolerances of the original unit system given in the dimension table not that of the converted tolerance dimensions.NOTE 1: This is due to the specimen SI dimensions and tolerances being hard conversions when this is not a dual standard. The user is directed to Test Methods A1058 if the tests are required in SI units.1.6 Attention is directed to ISO/IEC 17025 when there may be a need for information on criteria for evaluation of testing laboratories.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

This specification covers standard requirements for welded austenitic stainless steel feedforward heater tubes including those bent, if specified, into the form of U-tubes for application in tubular feed-water heaters. All finished straight tubing or straight tubing ready for U-bending shall be furnished in the solution-annealed condition. The steel shall conform to the required chemical composition for carbon, phosphorus, chromium, molybdenum, nitrogen, and copper. The material shall also conform to tensile properties such as tensile strength, yield strength, and elongation. The steel shall undergo mechanical tests such as tension test, hardness test, reverse bend test, flattening test, flange test, pressure test, hydrostatic test, and air underwater test. Nondestructive test (electric test) shall be performed and corrosion resisting properties shall be determined for each sample tube.1.1 This specification2 covers seamless and welded austenitic stainless steel feedwater heater tubes including those bent, if specified, into the form of U-tubes for application in tubular feed-water heaters.1.2 The tubing sizes covered shall be 5/8 to 1 in. [15.9 to 25.4 mm] inclusive outside diameter, and average or minimum wall thicknesses of 0.028 in. [0.7 mm] and heavier.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers several different types of chemical passivation treatments for stainless steel parts. The treatments are the following: immersion treatment using nitric acid solutions, immersion treatment using citric acid solution, and electrochemical treatment. Immediately after the removal from the passivating solution, the parts shall be thoroughly rinsed, using stagnant, countercurrent, or spray washes, singly or in combination, with or without a separate chemical treatment for neutralization of the passivation media. The chemical reactions of the passivating media on the surface of the stainless steel shall be stopped by rinsing of the stainless steel part, with or without a separate neutralization treatment. A chemical treatment shall be applied which will accelerate the formation of the passive film on a chemically clean stainless steel surface. The passivated parts shall exhibit a chemically clean surface and shall, on visual inspection, show no etching, pitting, or frosting. The following tests shall be performed on each lot of stainless steel parts: water immersion test, high humidity test, salt spray test, copper sulfate test, and potassium ferricyanide-nitric acid test. A free iron test shall be used for the detection of free iron on the surface of stainless steel.1.1 This specification covers several different types of chemical passivation treatments for stainless steel parts. It includes recommendations and precautions for descaling, cleaning, and passivation of stainless steel parts. It includes several alternative tests, with acceptance criteria, for confirmation of effectiveness of such treatments for stainless steel parts.1.2 Practices for the mechanical and chemical treatments of stainless steel surfaces are discussed more thoroughly in Practice A380/A380M.1.3 Several alternative chemical treatments are defined for passivation of stainless steel parts. Appendix X1 and Appendix X2 give some nonmandatory information and provides some general guidelines regarding the selection of passivation treatments appropriate to particular grades of stainless steel. This specification makes no recommendations regarding the suitability of any grade, treatment, or acceptance criteria for any particular application or class of applications.1.4 The tests in this specification are intended to confirm the effectiveness of passivation, particularly with regard to the removal of free iron and other exogenous matter. These tests include the following practices:1.4.1 Practice A—Water Immersion Test,1.4.2 Practice B—High Humidity Test,1.4.3 Practice C—Salt Spray Test,1.4.4 Practice D—Copper Sulfate Test,1.4.5 Practice E—Potassium Ferricyanide-Nitric Acid Test, and1.4.6 Practice F—Damp Cloth Test, and1.4.7 Practice G—Boiling Water Immersion Test.NOTE 1: Free iron denotes iron present on the surface of the parts, including but not limited to iron contamination, iron-tool marks, residual-iron salts from pickling solutions, iron dust, atmospheric exposure, iron deposits in welds, embedded iron, and iron oxide.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification deals with carbon and alloy steel forgings (including gas bottles) for use in thin-walled pressure vessels. Covered here are the following grades of steel forgings: Grade A; Grade B; Grade C; Grade D; Grade E, Classes 55, 65, and 70; Grade F, Classes 55, 65, and 70; Grade G, Classes 55, 65, and 70; Grade H, Classes 55, 65, and 70; Grade J, Classes 55, 65, and 70; Grade K; Grade L; Grade J, Class 110; and Grade M, Classes 85 and 100. Materials shall be manufactured by melting procedures, and optionally heat treated by normalization, normalization and tempering, or liquid-quenching and tempering. Heat and product analyses shall be performed wherein steel specimens shall conform to required chemical compositions of carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, and vanadium. Steel materials shall also undergo bending, flattening and hardness tests and shall conform to required values of tensile strength, yield strength, elongation, and hardness. Forgings shall be subjected to magnetic particle examination as well.1.1 This specification2 covers relatively thin-walled forgings (including gas bottles) for pressure vessel use. Three types of carbon steel and six types of alloy steel are included. Provision is made for integrally forging the ends of vessel bodies made from seamless pipe or tubing.NOTE 1: When working to the chemical and tensile requirements of this specification, the influence of wall thickness and cooling rate will necessarily eliminate certain forging sizes in each class.NOTE 2: Designations have been changed as follows:Current FormerlyGrade A Type IGrade B Type IIGrade C Type IIIGrade D Type IVGrade E Class 55 Type V Grade 1 Class 55Grade E Class 65 Type V Grade 1 Class 65Grade E Class 70 Type V Grade 1 Class 70Grade F Class 55 Type V Grade 2 Class 55Grade F Class 65 Type V Grade 2 Class 65Grade F Class 70 Type V Grade 2 Class 70Grade G Class 55 Type V Grade 3 Class 55Grade G Class 65 Type V Grade 3 Class 65Grade G Class 70 Type V Grade 3 Class 70Grade H Class 55 Type V Grade 4 Class 55Grade H Class 65 Type V Grade 4 Class 65Grade H Class 70 Type V Grade 4 Class 70Grade J Class 55 Type V Grade 5 Class 55Grade J Class 65 Type V Grade 5 Class 65Grade J Class 70 Type V Grade 5 Class 70Grade K Type VIGrade L Type VIIGrade J Class 110 Type VIIIGrade M Class 85 Type IX Class AGrade M Class 100 Type IX Class B1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 Unless the order specifies the applicable “M” specification designation (SI units), the material shall be furnished to inch-pound units.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers hot-wrought steel bars for the manufacture of general purpose springs such as coil, torsion, and leaf. The steel shall be melt processed by using open-hearth, basic-oxygen, or electric furnace. The materials shall undergo heat analysis and shall conform to the required chemical compositions and hardenability. The steel specimens shall conform to the required values of rounded corner radii and cross section tolerances for round-edge flat bars.1.1 This specification covers hot-wrought steel bars to be used for the manufacture of general-purpose springs such as coil, torsion, and leaf.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers hot- and cold-finished alloy steel bars including rounds, squares, hexagons, and hot-rolled or extruded shapes for use in corrosion and heat-resisting service. The steel specimens shall be furnished in the solution annealed condition with subsequent light drawing and straightening permitted. The steel materials shall conform to the required chemical compositions of carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, and molybdenum. Mechanical tests shall be performed wherein the materials shall conform to the required values of tensile strength, yield strength, elongation, and hardness.1.1 This specification covers hot- and cold-finished alloy steel bars having a chromium content equal to or less than 11.0 % including rounds, squares, hexagons, and hot-rolled or extruded shapes for use in corrosion and heat-resisting service.1.2 Some steels covered by this specification, especially the high silicon-containing steels, because of their particular alloy content and specialized properties, may require special care in their fabrication and welding. Specific procedures are of fundamental importance, and it is presupposed that all parameters will be in accordance with approved test methods capable of producing the desired properties in the finished fabrication.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This specification and the applicable material specifications are expressed in both inch-pound and SI units. However, unless the order specifies the applicable “M” specification designation (SI units), the material shall be furnished in inch-pound units.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers double submerged-arc welded, black, plain end steel pipes for use in the conveyance of fluids under pressure. The pipes shall be capable of being welded in the field. Skelp widths for helical seam pipe shall be neither less than 0.8 nor more than 3.0 times the pipe's specified outside diameter. Skelp end welds shall not be permitted in finished pipe, except for helical seam pipe having its skelp end welds manufactured by double submerged-arc welding. For such pipes, skelp ends shall have been properly prepared for welding. The specimens shall undergo the following tests: tension test, guided bend test, Charpy V-notch test, and hydrostatic test. After hydrostatic test, nondestructive examinations by ultrasonic inspection shall be done.1.1 This specification covers double submerged-arc welded, black, plain end steel pipe for use in the conveyance of fluids under pressure. Pipe in sizes NPS 16 and larger, as given in ASME B36.10, are included; pipe having other dimensions, in this size range, are permitted, provided such pipe complies with all other requirements of this specification.1.2 It is intended that pipe be capable of being welded in the field when welding procedures in accordance with the requirements of the applicable pipeline construction code are used.1.3 The values stated in either inch-pound units or in SI units are to be regarded separately as standard. The values in each system are not exact equivalents, therefore, each system is to be used independently of the other, without combining values in any way.1.4 The following precautionary statement pertains to the test method portion, Section 14 of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
866 条记录,每页 15 条,当前第 1 / 58 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页