微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers carbon and alloy steel pipe, electric-fusion-welded with filler metal added, fabricated from pressure-vessel-quality plate of several analyses and strength levels and suitable for high-pressure service at high temperatures. Heat treatment may or may not be required to attain the desired mechanical properties. The pipes are classified according to steel grades and are designated in classes according to the type of heat treatment performed in the pipe manufacture, whether the weld is radiographically examined, and whether the pipe has been pressure tested. The steel welds shall be made either manually or automatically by an electric process involving the deposition of filler metal. The welded joints shall have positive reinforcement at the center of each side of the weld. The contour of this reinforcement shall be smooth, and the deposited metal shall be fused smoothly and uniformly into the plate surface. The joints shall undergo tension, bend and pressure tests. Unacceptable surface imperfections shall be removed by grinding or machining. The depression after grinding or machining shall be blended uniformly into the surrounding surface. Repair of weld and base metal defects shall be done by welding.1.1 This specification2 covers carbon and alloy steel pipe, electric-fusion-welded with filler metal added, fabricated from pressure-vessel-quality plate of several analyses and strength levels and suitable for high-pressure service at high temperatures. Heat treatment may or may not be required to attain the desired mechanical properties or to comply with applicable code requirements. Supplementary requirements are provided for use when additional testing or examination is desired.1.2 The specification nominally covers pipe 16 in. [400 mm] in outside diameter and larger with wall thicknesses up to 3 in. [75 mm] inclusive. Pipe having other dimensions may be furnished provided it complies with all other requirements of this specification.1.3 Several grades and classes of pipe are provided.1.3.1 Grade designates the type of plate used as listed in Table 1.1.3.2 Class designates the type of heat treatment performed in the manufacture of the pipe, whether the weld is radiographically examined, and whether the pipe has been pressure tested as listed in 1.3.3.1.3.3 Class designations are as follows (Note 1):Class Heat Treatment on Pipe Radiography, see Section Pressure Test, see Section       10 none none none11 none 9 none12 none 9 8.313 none none 8.320 stress relieved, see 5.3.1 none none21 stress relieved, see 5.3.1 9 none22 stress relieved, see 5.3.1 9 8.323 stress relieved, see 5.3.1 none 8.330 normalized, see 5.3.2 none none31 normalized, see 5.3.2 9 none32 normalized, see 5.3.2 9 8.333 normalized, see 5.3.2 none 8.340 normalized and tempered, see 5.3.3 none none41 normalized and tempered, see 5.3.3 9 none42 normalized and tempered, see 5.3.3 9 8.343 normalized and tempered, see 5.3.3 none 8.350 quenched and tempered, see 5.3.4 none none51 quenched and tempered, see 5.3.4 9 none52 quenched and tempered, see 5.3.4 9 8.353 quenched and tempered, see 5.3.4 none 8.3NOTE 1: Selection of materials should be made with attention to temperature of service. For such guidance, Specification A20/A20M may be consulted.1.4 Optional requirements of a supplementary nature are provided, calling for additional tests and control of repair welding, when desired.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the “M” designation of this specification is specified in the order.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Permittivity and dissipation factor are sensitive to changes in chemical composition, impurities, and homogeneity. Measurement of these properties is, therefore, useful for quality control and for determining the effect of environments such as moisture, heat, or radiation.1.1 This test method covers the determination of the relative permittivity (dielectric constant) and dissipation factor of solid dielectrics from 50 Hz to 10 MHz over a range of temperatures from −80 to 500 °C.2,3 Two procedures are included as follows:1.1.1 Procedure A—Using Micrometer Electrode.1.1.2 Procedure B—Using Precision Capacitor.NOTE 1: In common usage the word “relative” is frequently dropped.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Design calculations for such components as transmission lines, antennas, radomes, resonators, phase shifters, etc., require knowledge of values of complex permittivity at operating frequencies. The related microwave measurements substitute distributed field techniques for low-frequency lumped-circuit impedance techniques.4.2 Further information on the significance of permittivity is contained in Test Methods D150.4.3 These test methods are useful for specification acceptance, service evaluation, manufacturing control, and research and development of ceramics, glasses, and organic dielectric materials.1.1 These test methods cover the determination of relative (Note 1) complex permittivity (dielectric constant and dissipation factor) of nonmagnetic solid dielectric materials.NOTE 1: The word “relative” is often omitted.1.1.1 Test Method A is for specimens precisely formed to the inside dimension of a waveguide.1.1.2 Test Method B is for specimens of specified geometry that occupy a very small portion of the space inside a resonant cavity.1.1.3 Test Method C uses a resonant cavity with fewer restrictions on specimen size, geometry, and placement than Test Methods A and B.1.2 Although these test methods are used over the microwave frequency spectrum from around 0.5 to 50.0 GHz, each octave increase usually requires a different generator and a smaller test waveguide or resonant cavity.1.3 Tests at elevated temperatures are made using special high-temperature waveguide and resonant cavities.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Continuous fiber-reinforced ceramic composites are candidate materials for structural applications requiring high degrees of wear, erosion, corrosion resistance, and damage tolerance at high temperatures.5.2 The 1D and 2D CFCCs are highly anisotropic and their transthickness tensile and interlaminar shear strength are lower than their in-plane tensile and in-plane shear strength, respectively.5.3 Shear tests provide information on the strength and deformation of materials under shear stresses.5.4 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.5.5 For quality control purposes, results derived from standardized shear test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.1.1 This test method addresses the uniaxial compression of a double-notched test specimen to determine interlaminar shear strength of continuous fiber-reinforced ceramic composites (CFCCs) at elevated temperatures. Failure of the test specimen occurs by interlaminar shear between two centrally located notches machined halfway through the thickness of the test specimen and spaced a fixed distance apart on opposing faces (see Fig. 1). Test specimen preparation methods and requirements, testing modes (force or displacement control), testing rates (force rate or displacement rate), data collection, and reporting procedures are addressed.FIG. 1 Schematic of Uniaxial Compression of Double-Notched Test Specimen for the Determination of Interlaminar Shear Strength of CFCCs1.2 This test method is used for testing advanced ceramic or glass matrix composites with continuous fiber reinforcement having a laminated structure such as in unidirectional (1D) or bidirectional (2D) fiber architecture (lay-ups of unidirectional plies or stacked fabric). This test method does not address composites with nonlaminated structures, such as (3D) fiber architecture or discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics.1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are noted in 8.1 and 8.2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Differential scanning calorimetry and differential thermal analysis provide a rapid method for determining the fusion and crystallization temperatures of crystalline materials.5.2 This test is useful for quality control, specification acceptance, and research.1.1 This test method describes the determination of melting (and crystallization) temperatures of pure materials by differential scanning calorimetry (DSC) and differential thermal analysis (DTA).1.2 This test method is generally applicable to thermally stable materials with well-defined melting temperatures.1.3 The normal operating range is from −120 to 600°C for DSC and 25 to 1500°C for DTA. The temperature range can be extended depending upon the instrumentation used.1.4 Computer or electronic based instruments, techniques, or data treatment equivalent to those in this test method may be used.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The difference between the temperature at which a vulcanizate retracts 10 % (TR10) and the temperature at which a vulcanizate retracts 70 % (TR70) increases as the tendency to crystallize increases.4.2 TR70 correlates with low-temperature compression set.4.3 TR10 has been found to correlate with brittle points in vulcanizates based on polymers of similar type.4.4 In general, the retraction rate is believed to correlate with low-temperature flexibility of both crystallizable and noncrystallizable rubbers.1.1 This test method describes a temperature-retraction procedure for rapid evaluation of crystallization effects and for comparing viscoelastic properties of rubber and rubber-like materials at low temperatures. This test method is useful when employed in conjunction with other low-temperature tests for selection of materials suitable for low-temperature service.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The continuous grading temperatures and continuous grade are used for informational purposes only and shall not be used for the sale or purchase of asphalt binders. The continuous grading temperatures and continuous grade may be used for forensic or research studies and when producing, blending, modifying, or otherwise evaluating asphalt binders. This guide is applicable to Specification D6373, Tables 1 and 2.NOTE 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This practice is used to estimate the continuous grading temperatures and continuous grade for an asphalt binder graded in accordance with the requirements specified in Specification D6373.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
155 条记录,每页 15 条,当前第 1 / 11 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页