微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Expanded welded socket joints may be used with the following pipe and tube:3.1.1 Seamless Copper Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.1.2 Seamless Copper-Nickel Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.1.3 Seamless Copper Water Tube—2.125-in. (55-mm) outside diameter through 4.125-in. (105-mm) outside diameter.3.1.4 Seamless Stainless Steel Pipe—2 NPS through 6 NPS, Schedules 5 and 10.3.2 Expanded silver brazed socket joints may be used with the following tube:3.2.1 Seamless Copper Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.2.2 Seamless Copper-Nickel Tube—2.375-in. (60-mm) outside diameter through 6.625-in. (170-mm) outside diameter.3.2.3 Seamless Copper Water Tube—2.125-in. (55-mm) outside diameter through 4.125-in. (105-mm) outside diameter.3.3 Expanded welded and silver brazed socket joints may be used where experience or test has demonstrated that the joint is safe and suitable for design and operating conditions, and where adequate provision is made to prevent separation of the joint.1.1 This practice covers expanded welded and silver brazed socket joints for use on shipboard piping systems.1.2 Expanded welded and silver brazed socket joints are to be used to join two pipes or tubes having the same NPS (see Note 1) without using a fitting or butt weld.1.3 Brazed socket type joints are not intended for use on systems containing flammable or combustible fluids in areas where fire hazards exist or where the service temperature exceeds 425°F (205°C).1.4 Brazed joints depending solely upon a fillet weld rather than primarily upon brazing material between pipe/tube and socket are not covered by this practice.NOTE 1: The dimensionless designator nominal pipe size (NPS) has been substituted in this practice for such traditional terms as “nominal diameter,” “size,” “nominal size,” and “iron pipe size.”1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers aluminum and aluminum-alloy seamless pipe and seamless extruded tube for gas and oil transmission and distribution piping systems. The pipe and tube shall be produced from hollow extrusion ingot (cast in hollow form or pierced) and shall be extruded by use of the die and mandrel method. The pipe and tube shall conform to the chemical composition requirements specified. The determination of chemical composition shall be made in accordance with suitable chemical (test methods E 34), or spectrochemical (test methods E 227, E 607, and E 1251) methods. Heat treatment for the production of T1 and T5-type tempers shall be in accordance with Practice B 807, and for the production of T4 and T6-type tempers, except as noted, shall be in accordance with practice B 918. Unless otherwise specified, alloys 6061, 6063, and 6351 may be solution heat treated and quenched at the extrusion press in accordance with practice B 807 for the production of T4 and T6-type tempers, as applicable. The material shall conform to the tensile property requirements specified. The tension tests shall be made in accordance with test methods B 557 and B 557M. Pipe and tube heat treated at the extrusion press shall conform to all requirements specified.1.1 This specification covers seamless pipe and seamless extruded tube in the aluminum and aluminum alloys (Note 1) and tempers listed in Table 1 and Table 2, respectively. Seamless pipe and seamless tube are intended for use in applications involving internal pressure.Note 1—Throughout this specification use of the term alloy in the general sense includes aluminum as well as aluminum alloy.Note 2—For drawn seamless tubes, see Specifications B210 and B210M; for extruded tubes, Specifications B221 and B221M; for drawn seamless tubes for condensers and heat exchangers, Specifications B234 and B234M; for seamless pipe and seamless extruded tube, B241/B241M; for round welded tubes, Specification B313/B313M; for seamless condenser and heat exchanger tubes with integral fins, Specification ; for extruded structural pipe and tube, Specification B429/B429M; and for drawn tube for general purpose applications, Specification B483/B483M.1.2 Alloy and temper designations are in accordance with ANSI H35.1 [H35.1M]. The equivalent Unified Numbering System alloy designations are those of Table 3 preceded by A9, for example, A93003 for aluminum alloy 3003 in accordance with Practice E527.1.3 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.TABLE 1 Tensile Property Limits for Extruded Seamless PipeA,BAlloy Temper Pipe Size,in. Strength, min, ksi [MPa] ElongationC,DTensile Yield (0.2 % Offset) in 2 in. [50 mm] or 4×Diameter, min, % in 5 × D(5.65)3003 H18 under 1 27.0 [185] 24.0 [165] 4 4 H112 1 and over 14.0 [95] 5.0 [35] 25 226061 T6 under 1 38.0 [260] 35.0 [240] 8 ... 1 and over 38.0 [260] 35.0 [240] 10E 96063 T6 all 30.0 [205] 25.0 [170] 8 76351 T5T6 allall 38.0 [260]42.0 [290] 35.0 [240]37.0 [255] 10E10F 99A The basis for establishment of mechanical property limits is given in Annex A1 of this specification.B To determine conformance to this specification, each value for tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi [MPa] and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.C Elongation of full-section and sheet-type specimens is measured in 2 in.; of cut-out round specimens, 4× specimen diameter.D Elongations in 50 mm apply for pipe tested in full sections and for sheet-type specimens machined from material up through 12.5 mm in thickness having parallel surfaces. Elongations in 5 × D (at 5.65), where D and A are diameter and cross-sectional area of the specimen, respectively, apply to round test specimens machined from thicknesses over 6.30 mm.E The minimum elongation for a wall thickness up through 0.249 in. [6.3 mm] is 8 %.F For wall thickness 0.124 in. [3.20 mm] and less, the minimum elongation is 8 %.TABLE 2 Tensile Property Limits for Extruded Seamless TubeA,BTemper Specified WallThickness, in. [mm] Area, in.2 [mm2] Tensile Strength, ksi [MPa] Yield Strength(0.2 % offset)ksi [MPa], min ElongationC,Dmin max in 2 in. [50 mm] or4 × D min,% in 5 × D(5.65)EAluminum 1060FOH112 allall allall 8.5 [60]8.5 [60] 14.0 [95]... [...] 2.5 [15]2.5 [15] 2525G 2222GAlloy 3003FOH112 allall allall 14.0 [95]14.0 [95] 19.0 [130]... [...] 5.0 [35]5.0 [35] 2525 2222Alloy Alclad 3003FOH112 allall allall 13.0 [90]13.0 [90] 18.0 [125]... [...] 4.5 [30]4.5 [30] 2525 2222Alloy 5083FOH111H112 all [130.00]all [130.00]all [130.00] up through 32.0 [20 000]up through 32.0 [20 000]up through 32.0 [20 000] 39.0 [270]40.0 [275]39.0 [270] 51.0 [350]... [...]... [...] 16.0 [110]24.0 [165]16.0 [110] 141212 121010Alloy 5086FOH111H112 all [130.00]all [130.00]all [130.00] up through 32.0 [20 000]up through 32.0 [20 000]up through 32.0 [20 000] 35.0 [240]36.0 [250]35.0 [240] 46.0 [315]... [...]... [...] 14.0 [95]21.0 [145]14.0 [95] 141212 121010Alloy 6061FOH all all ... [...] 22.0 [150] 16.0I [...] 16 14T1 [16.00] all [180] ... [...] [95] 16 14 all all 26.0 [180] ... [...] 16.0 [110] 16 14T42J all all 26.0 [180] ... [...] 12.0 [85] 16 14T51 [16.00] all [240] ... [...] [205] 8 7 up through 0.249 [6.30]0.250 and over [6.30] allall 38.0 [260]38.0 [260] ... [...]... [...] 35.0 [240]35.0 [240] 810 ...9Alloy 6063FOHT1K allup through 0.500 [12.50]0.501–1.000 [12.50–25.00] ... [all]allall ... [...]17.0 [115]16.0 [110] 19.0 [130]... [...]... [...] ... [...]9.0 [60]8.0 [55] 181212 [...] 161010T4, T42L up through 0.500 [12.50] all 19.0 [130] ... [...] 10.0 [70] 14 12 0.501–1.000 [12.50–25.00] all 18.0 [125] ... [...] 9.0 [60] 14 [...] 12T5 up through 0.500 [12.50] all 22.0 [150] ... [...] 16.0 [110] 8 7 0.501–1.000 [12.50–25.0] all 21.0 [145] ... [...] 15.0 [105] 8 [...] 7T52 up through 1.000 [25.00] all 22.0 [150] 30.0 [205] 16.0M [110] 8 7T6, T62L up through 0.124 [3.20] all 30.0 [205] ... [...] 25.0 [170] 8 ... 0.125–1.000 [3.20–25.00] all 30.0 [205] ... [...] 25.0 [170] 10 7Alloy 6070FT6, T62L up through 2.999 up through 32 48.0 [330] ... [...] 45.0 [310] 6 5Alloy 6351FT4T6 allup through 0.1240.125–0.749 all...... 32.0 [220]42.0 [290]42.0 [290] ... [...]... [...]... [...] 19.0 [130]37.0 [255]37.0 [255] 16810 14...9A The basis of establishment of mechanical property limits is given in Annex A1 of this specification.B To determine conformance to this specification, each value for ultimate tensile strength and for yield strength shall be rounded to the nearest 0.1 ksi [MPa] and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E29.C Elongation of full-section and sheet-type specimens is measured in 2 in.; of cut-out round specimens, in 4× specimen diameter.D For material of such dimensions that a standard test specimen cannot be taken, or for material thinner than 0.062 in., the test for elongation is not required.E Elongations in 50 mm apply for tube tested in full section and for sheet-type specimens machined from material up through 12.5 mm in thickness having parallel surfaces. Elongations in 5× diameter (5.65), where D and A are diameter and cross-sectional area of the specimen, respectively, apply to round test specimens machined from thickness over 6.30 mm. For tube of such dimensions that a standard test specimen cannot be taken, the test for elongation is not required.F These alloys are also produced in the F temper, for which no mechanical properties are specified.G Maximum tensile strength and minimum elongation apply to tubes having diameters from 1.000 in. to 4.500 in. and wall thickness from 0.050 in. to 0.169 in. only. Minimum elongation applies to tubes having diameters from 25.00 to 115.00 mm and wall thickness over 1.30 through 4.30 mm only.H Upon heat treatment, annealed (0 temper) material shall be capable of developing the mechanical properties applicable to T42 temper material, and upon solution and precipitation heat treatment shall be capable of developing the mechanical properties applicable to T62 temper material.I Yield strength is maximum [110 MPa] max.J For stress-relieved tempers (T4510, T4511, T6510 and T6511) characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.K Formerly designated T42 temper. Properly aged precipitation heat-treated 6063-T1 extruded products are designated T5.L While material in the T42 and T62 tempers is not available from the material producer, the properties are listed to indicate those which can usually be obtained by the user when the material is properly solution heat treated or solution and precipitation heat treated from the O (annealed) or F (as-fabricated) tempers. These properties apply when samples of material supplied in the O or F temper are heat treated by the producer to the T42 or T62 tempers to determine that the material will respond to proper thermal treatment. Properties attained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment.M Maximum yield strength is 25.0 ksi [170 MPa].TABLE 3 Chemical CompositionA,B,CAlloy Composition, %Silicon Iron Copper Manganese Magnesium Chromium Zinc Vanadium Titanium Other ElementsD AluminumEach TotalE10603003 0.250.6 0.350.7 0.050.05–0.20 0.031.0–1.5 0.03... ...... 0.050.10 0.05... 0.03... 0.030.05 ...0.15 99.60 minFremainderAlclad 3003 3003 alloy clad inside or outside with 7072 alloy5083 0.40 0.40 0.10 0.40–1.0 4.0–4.9 0.05–0.25 0.25 ... 0.15 0.05 0.15 remainder5086 0.40 0.50 0.10 0.20–0.7 3.5–4.5 0.05–0.25 0.25 ... 0.15 0.05 0.15 remainder6061G 0.40–0.8 0.7 0.15–0.40 0.15 0.8–1.2 0.04–0.35 0.25 ... 0.15 0.05 0.15 remainder6063 0.20–0.6 0.35 0.10 0.10 0.45–0.9 0.10 0.10 ... 0.10 0.05 0.15 remainder6070 1.0–1.7 0.50 0.15–0.40 0.40–1.0 0.50–1.2 0.10 0.25 ... 0.15 0.05 0.15 remainder6351 0.7–1.3 0.50 0.10 0.40–0.8 0.40–0.8 ... 0.20 ... 0.20 0.05 0.15 remainder7072H 0.7 Si + Fe 0.10 0.10 0.10 ... 0.8–1.3 ... ... 0.05 0.15 remainderA Limits are in percent maximum unless shown as a range or stated otherwise.B Analysis shall be made for the elements for which limits are shown in this table.C For purposes of determining conformance to these limits, an observed value or a calculated value obtained from analysis shall be rounded to the nearest unit in the last right-hand place of figures used in expressing the specified limit, in accordance with the rounding method of Practice E29.D Others includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered non-conforming.E Other ElementsTotal shall be the sum of unspecified metallic elements 0.010 % or more, rounded to the second decimal before determining the sum.F The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.G In 1965 the requirements for Alloy 6062 were combined with those of Alloy 6061 by revision of the minimum chromium content from 0.15 to 0.04. For this reason, Alloy 6062 was cancelled.H Composition of cladding alloy as applied during the course of manufacture. The sample from finished tube shall not be required to conform to these limits.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM B88M-20 Standard Specification for Seamless Copper Water Tube (Metric) Active 发布日期 :  1970-01-01 实施日期 : 

16.1 For purposes of determining compliance with the specified limits for requirements of the properties listed in Table 8, an observed value or calculated value shall be rounded as indicated in accordance with the rounding method of Practice E29.AbstractThis specification covers seamless copper alloy water tubes for general plumbing and similar applications in fluid conveyance. These water tubes made from UNS C10200, C12000, and C12200 copper alloys are commonly used with solder, flared, or compression-type fittings. The materials should be cold-drawn to size and the tubes finished by cold working and annealing to produce the required temper and surface finish. When tubes are furnished in coils, annealing is done after coiling, while those furnished in straight lengths should be in the drawn temper. The numerical values in this specification are not presented in inch-pound units, but rather, in metric or SI units only.1.1 This specification covers seamless copper water tube suitable for general plumbing, similar applications for the conveyance of fluids, and commonly used with solder, flared, or compression-type fittings. The type of copper water tube suitable for any particular application is determined by the internal or external fluid pressure, by the installation and service conditions, and by local requirements. Means of joining or bending are also factors that affect the selection of the type of tube to be used.2NOTE 1: Annealed tube is suitable for use with flared or compression fittings, and with solder-type fittings, provided rounding and sizing of the tube ends is performed where needed.NOTE 2: Drawn temper tube is suitable for use with solder-type fittings. Types A and B tube, in the drawn temper, are suitable for use with certain types and sizes of compression fittings.1.2 The tube shall be produced from the following coppers, and the manufacturer has the option to supply any one of them, unless otherwise specified:CopperUNS No. Previously UsedDesignation Description     C10200 OF Oxygen free without  residual deoxidantsC12000 DLP Phosphorus deoxidized, low residual phosphorusC12200 DHP Phosphorus deoxidized, high residual phosphorus1.3 The assembly of copper plumbing or fire sprinkler systems by soldering is described in Practice B828.1.4 Solders for joining copper potable water or fire sprinkler systems are covered by Specification B32. The requirements for acceptable fluxes for these systems are covered by Specification B813.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.NOTE 3: This specification is the SI companion to Specification B88.1.6 The following safety hazards caveat pertains only to the test methods portion, Section 15, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 This practice is to be used to determine the length of a dip tube of a mechanical pump dispenser that extends to the bottom-corner of a container.2.2 This practice is to be used to determine the length of a dip tube of a mechanical pump dispenser that extends to the bottom-center of a container.1.1 This practice covers the determination technique for a dip tube of a mechanical pump dispenser.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Sounding tubes may be fabricated from 11/2 NPS or larger. Only when otherwise specified, Schedule 40 components, manufactured from the list of material indicated in Practice F1155 and Specification A53/A53M, Grade S or Grade ERW. In addition, sounding tubes may be fabricated in stainless steel for stainless steel tanks.5.1.1 Sounding tubes passing through or terminating in fuel tanks, potable water tanks, or clean salt water ballast tanks should be constructed of 70-30 copper nickel, but other suitable material is acceptable.5.2 Striker plates shall be fabricated in accordance with Specification A36/A36M.5.3 The fittings shall be designed in accordance with ASME B16.5, ASME B16.9, ASME B16.28, or ASME B16.11 as applicable (see Table 21 in Practice F1155), and the installation shall be in accordance with ASME B31.1 as modified by Specification F722. These standards cover the fitting tolerances.5.4 Some cargo may preclude the use of materials specified in this guide. However, configuration examples are applicable for all applications.5.5 When a sounding tube is combined with the air escape, either three 11/4-in. (approximately 30-mm) diameter holes approximately 12 in. (305 mm) from the tank top equally spaced or six 1/2-in. (approximately 15-mm) diameter holes approximately 6 in. (150 mm) from the tank top equally spaced can be used for perforations. See Fig. 2.5.6 Figs. 1-4 are guidance details.FIG. 1 Type I Sounding TubeFIG. 2 Type II Sounding TubeFIG. 3 Type III Sounding TubeFIG. 4 Type IV Sounding Tube1.1 This guide covers design and construction criteria for striker plates and sounding tubes, excluding deck penetrations and caps, for use with sounding rods or tapes in freshwater, saltwater, and oil tanks.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

2.1 This practice is to be used to measure the length of a specified dip tube from the bottom of the sealing surface to the end of the dip tube in a mechanical pump dispenser.2.2 This practice is to be used to measure the exposed length of a specified dip tube of a mechanical pump dispenser.1.1 This practice covers the measurement technique for a dip tube of a mechanical pump dispenser.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Manufacturers of carpet need to monitor emissions of VOCs to assess the environmental impact of their products indoors. These results are also used to demonstrate compliance with VOC emission limits for individual VOCs.5.2 These data are also used to understand which VOCs are emitted from a product or material and to measure the magnitude of those emissions.5.3 Emission data may be used to compare different lots of carpet of the same materials of construction, or carpets composed of different materials of construction, in order to develop products with lower emissions and lower potential environmental impact.5.4 This test method should be used in conjunction with practices/guidelines for emissions testing such as Guide D5116, Practice D7143, Practice D7706, ISO 16000-9, and ISO 16000-10. These detail how to select and prepare samples and how and when to carry out emissions tests such that the concentration and profile of vapors in the exhaust air of the emission chamber/cell are representative of the product under test. This test method covers the sampling and analysis of volatile organic compounds in the exhaust gas from the chamber/cell using thermal desorption—compatible sorbent tubes and will provide the necessary analytical consistency to ensure that reproducible data is obtained for the analysis of identical vapor samples by different laboratories.1.1 This test method describes an analytical procedure for identifying and quantifying the masses of individual volatile organic compounds (individual VOCs or IVOCs) that are emitted into a flow of air from carpet specimens and collected on sorbent sampling tubes during emissions testing.1.2 This test method will be used in conjunction with a standard practice for sampling and preparing carpet specimens for emissions testing. If a specific chamber practice is not available for the carpet specimens, this test method should be used in conjunction with approved standard practices for emissions testing and sample preparation.1.3 When used in conjunction with standard practices for carpet specimen preparation and collection of vapor-phase emissions , this test method will provide a standardized means of determining the levels of IVOC in the exhaust stream of the emissions test chamber/cell. If this test method is used with a reliable practice for emissions testing, these IVOC levels can be used to determine the emission rate from a unit quantity (usually surface area) of the sample material under test.1.4 VOCs in the exhaust stream of an emissions test device are collected on thermal desorption tubes packed with a specific combination of sorbents using active (pumped) sampling. (See Practice D6196 for a more general description of vapor collection using pumped sampling onto sorbent tubes.) The samples are analyzed by thermal desorption (TD) with gas chromatography and mass spectrometry detection (GC/MS) and/or flame ionization detection (FID) depending upon the requirements of the specific materials emissions testing/certification protocol.1.5 This test method can be used for the measurement of most GC-compatible organic vapors ranging from the approximate volatility from n-hexane to n-hexadecane (that is, compounds with vapor pressures ranging from 16 kPa to 4 × 10-4 kPa at 25°C). Properties other than a compound’s vapor pressure such as affinity for the sorbent may need to be taken into account. Compounds with vapor pressures outside this range may or may not be quantifiable by this test method. However, qualitative data concerning the identity of a compound(s), outside the stated volatility range for quantitation, may still be useful to the user. This test method can be applied to analytes over a wide concentration range—typically 1 μg/m3 to 1 mg/m3 concentration of vapor in the exhaust air from the emission cell or chamber.1.6 This test method is not capable of quantifying all compounds which are emitted from carpets. See the appropriate test practices/methods for determining other compounds that are not amenable to analysis by gas chromatography (that is, Test Method D5197 for the determination of aldehydes).1.7 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification establishes the requirements for welded copper for air conditioning and refrigeration service for use in connections, repairs, and alterations. The material of manufacture shall be sheet or strip of Copper Alloy UNS No. C10100, or C10200, or C12000, or C12200 of such purity and soundness as to be suitable for processing into welded tube to meet the properties prescribed. The product shall be manufactured by forming the material into a tubular shape on a suitable forming mill and welded using an automatic process. The product shall be cold worked to the finished size and wall thickness and subsequently annealed to meet the temper properties specified. The material shall conform to the chemical compositional requirements for the Copper UNS No. designation specified. Tensile strength test, expansion test, microscopical examination, hydrogen embrittlement susceptibility, flattening test, reverse bend test, electromagnetic test, and cleanness test shall be made to conform to specified requirements.1.1 This specification establishes the requirements for welded copper tube for air conditioning and refrigeration service for use in connections, repairs, and alterations. The tube shall be made from one of the following coppers:Copper UNS No. Previously Used Designation Type of Copper     C10100 OFE Oxygen-free electronicC10200 OF Oxygen-free without-residual oxidantsC12000 DLP Phosphorus-deoxidized, low-residual phosphorusC12200 DHP Phosphorus-deoxidized, high-residual phosphorus NOTE 1: Fittings used for soldered or brazed connections in air conditioning and refrigeration systems are described in ASME Standard B 16.22.NOTE 2: The assembly of copper tubular systems by soldering is described in Practice B828.NOTE 3: Solders for joining copper tubular systems by described in Specification B32. The requirements for acceptable fluxes for these systems are described in Specification B813.1.2 Copper UNS No. C12200 shall be furnished, unless otherwise specified. The copper tube shall be supplied in annealed coils or drawn temper straight lengths.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM B643-18 Standard Specification for Copper-Beryllium Alloy Seamless Tube Active 发布日期 :  1970-01-01 实施日期 : 

This specification establishes requirements for copper-beryllium alloy seamless tube in straight lengths. The material of manufacture shall be Copper Alloy UNS C17200, cast and worked into tubular form that shall have heat traceable identity. The product shall be manufactured by a combination of hot and cold working, annealing, or precipitation heat treatment, or both, as to produce a uniform wrought structure in the finished product, to meet the temper specified (TB00 (A), TD04 (H), TF00 (AT), or TH04 (HT)). The material shall conform to the chemical composition requirements prescribed for beryllium, copper, aluminum, silicon, and additive elements such as nickel, cobalt, and iron, as determined by chemical analysis. The alloy shall also conform to the specified physical property requirements such as microstructure and grain size, and to the prescribed dimensional and mass requirements. The material shall meet the requirements specified for mechanical properties before and after precipitation heat treatment, such as Rockwell hardness, tensile strength, yield strength, and elongation. Requirements for tension test and other tests to be used to determine the properties mentioned including sampling and specimen preparation are detailed.1.1 This specification establishes requirements for copper-beryllium alloy seamless tube in straight lengths. Copper Alloy UNS C17200 will be the alloy furnished whenever Specification B643 is specified.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazard caveat pertains only to the test methods described in this specification.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
228 条记录,每页 15 条,当前第 1 / 16 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页