微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 The electrical properties of gate and field oxides are altered by ionizing radiation. The method for determining the dose delivered by the source irradiation is discussed in Practices E666, E668, E1249, and Guide E1894. The time dependent and dose rate effects of the ionizing radiation can be determined by comparing pre- and post-irradiation voltage shifts, ΔVot and ΔVit. This test method provides a means for evaluation of the ionizing radiation response of MOSFETs and isolation parasitic MOSFETs.5.2 The measured voltage shifts, ΔVot and ΔVit, can provide a measure of the effectiveness of processing variations on the ionizing radiation response.5.3 This technique can be used to monitor the total-dose response of a process technology.1.1 This test method covers the use of the subthreshold charge separation technique for analysis of ionizing radiation degradation of a gate dielectric in a metal-oxide-semiconductor-field-effect transistor (MOSFET) and an isolation dielectric in a parasitic MOSFET.2,3,4 The subthreshold technique is used to separate the ionizing radiation-induced inversion voltage shift, ΔVINV into voltage shifts due to oxide trapped charge, ΔVot and interface traps, ΔV it. This technique uses the pre- and post-irradiation drain to source current versus gate voltage characteristics in the MOSFET subthreshold region.1.2 Procedures are given for measuring the MOSFET subthreshold current-voltage characteristics and for the calculation of results.1.3 The application of this test method requires the MOSFET to have a substrate (body) contact.1.4 Both pre- and post-irradiation MOSFET subthreshold source or drain curves must follow an exponential dependence on gate voltage for a minimum of two decades of current.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The dielectric breakdown voltage is a measure of the ability of an insulating liquid to withstand electrical stress. The power-frequency breakdown voltage of a liquid is reduced by the presence of contaminants such as cellulosic fibers, conducting particles, dirt, and water. A low result in this test method indicates the presence of significant concentrations of one or more of these contaminants in the liquid tested. See Appendix X1.3.2 A high breakdown voltage measured in this test method does not necessarily indicate that the amount of the contaminants present in a liquid from which the sample was taken is sufficiently low for the sampled liquid to be acceptable in all electrical equipment. Test Method D877 is not sensitive to low levels of these contaminants. Breakdown in this test method is dominated by events occurring at the electrode edges. The voltage stress distribution between the parallel disk electrodes used in this test method are quasi-uniform and there is substantial stress concentration at the sharp edges of the flat disk faces.3.3 This test method may be used for evaluation of insulating liquids in equipment that is designed to be filled with unprocessed liquids as delivered by a vendor.3.4 This test method is not recommended for evaluation of the breakdown voltage of liquids used in equipment that requires the application of vacuum and filtering of the oil before being placed into service. Test Method D1816 should be used to determine the breakdown voltage of filtered and degassed liquids.3.5 This test method is used in laboratory or field tests. For field breakdown results to be comparable to laboratory results, all criteria including room temperature (20 to 30 °C) must be met.1.1 This test method describes two procedures, A and B, for determining the electrical breakdown voltage of insulating liquid specimens. The breakdown test uses ac voltage in the power-frequency range from 45 to 65 Hz.1.2 This test method is used to determine the electrical discharge voltage of in-use electrical liquids. It is no longer applicable to new insulating liquids upon receipt, in which case Test Method D1816 shall be used.NOTE 1: It is understood that long-term histories for this test method exist, but this test method is no longer considered applicable as numerous deficits exist that affect its usefulness. It is recommended to move all new and in-service electrical discharge voltage testing of electrical insulating liquids to Test Method D1816.1.3 Limitations of the Procedures: 1.3.1 The sensitivity of this test method to the general population of contaminants present in a liquid sample decreases as applied test voltages used in this test method become greater than approximately 25 kV rms.1.3.2 If the concentration of water in the sample at room temperature is less than 60 % of saturation, the sensitivity of this test method to the presence of water is decreased. For further information refer to RR:D27-1006.21.3.3 The suitability for this test method has not been determined for a liquid's viscosity higher than 900 cSt at 40 °C.1.4 Procedure Applications 1.4.1 Procedure A: 1.4.1.1 Procedure A is used to determine the breakdown voltage of liquids in which any insoluble breakdown products easily settle during the interval between the required repeated breakdown tests. These liquids include petroleum oils, hydrocarbons, natural and synthetic esters, and askarels (PCB) used as insulating and cooling liquids in transformers, cables, and similar apparatus.1.4.1.2 Procedure A may be used to obtain the dielectric breakdown of silicone fluid as specified in Test Methods D2225, provided the discharge energy into the sample is less than 20 mJ (milli joule) per breakdown for five consecutive breakdowns.1.4.2 Procedure B: 1.4.2.1 This procedure is used to determine the breakdown voltage of liquids in which any insoluble breakdown products do not completely settle from the space between the disks during the 1-min interval required in Procedure A. Procedure B, modified in accordance with Section 17 of Test Methods D2225, is acceptable for testing silicone dielectric liquids if the requirements of 1.4.1.2 can not be achieved.1.4.2.2 Procedure B should also be applied for the determination of the breakdown voltage of liquid samples containing insoluble materials that settle from the specimen during testing. These may include samples taken from circuit breakers, load tap changers, and other liquids heavily contaminated with insoluble particulate material. These examples represent samples that may have large differences between replicate tests. The use of Procedure B will result in a more accurate value of breakdown voltage when testing such liquids.1.4.2.3 Use Procedure B to establish the breakdown voltage of an insulating liquid where an ASTM specification does not exist or when developing a value for an ASTM guide or standard. Procedure A may be used once the single operator precision of 13.1 has been demonstrated.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification defines the requirements for portable, live-line tool-supported two-pole phasing testers to be used on AC electrical systems. It provides two types of phasing testers, designated as Type I Resistive and Type II Capacitive, and two styles of phasing testers, designated as Style A Numerical and Style B Audible/Visual. It does not cover the use and maintenance of these high voltage phasing testers and any necessary insulated tool handles. The standard addresses ordering information for high voltage phasing testers, marking and instructions, workmanship, finish and appearance, testing, rejection and rehearing, certification, and precision and bias. Definitions of terms specific to this standard are provided, including clear indication, contact electrode, indicator, indication, insertion limit, interference field, interference ground, threshold angle, threshold voltage, and voltage range.1.1 This specification covers portable, live-line tool-supported two-pole phasing testers to be used on AC electrical systems.1.2 Two types of phasing testers are provided and are designated as Type I Resistive and Type II Capacitive.1.3 Two styles of phasing testers are provided and are designated as Style A Numerical and Style B Audible/Visual.1.4 The use and maintenance of these high voltage phasing testers and any necessary insulated tool handles are beyond the scope of this specification.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Except where specified, all voltage defined in this specification refers to phase-to-phase voltage in a three-phase system. Phasing Testers covered by this specification may be used in other than three-phase systems, but the applicable phase-to-phase or phase-to-ground (earth) voltages shall be used to determine the operating voltage.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method is most commonly performed using a negative polarity needle or a sharp defined point to an opposing grounded sphere (NPS). The NPS breakdown voltage of fresh unused liquids measured in the highly divergent field in this configuration depends on the insulating liquid composition, decreasing with increasing concentration of aromatic, particularly polyaromatic, hydrocarbon molecules in liquids of petroleum origin and decreasing with ester molecular structure, either natural or synthetic.3.2 This test method may be used to evaluate the continuity of composition of an insulating liquid from shipment to shipment. The NPS impulse breakdown voltage of an insulating liquid can also be substantially lowered by contact with materials of construction, by service aging, particulate matter, and by other impurities. Test results lower than those expected for a given fresh liquid may also indicate use or contamination.3.3 Although polarity of the voltage wave has little or no effect on the breakdown strength of an insulating liquid in uniform fields, polarity does have a marked effect on the breakdown voltage in nonuniform electric fields.3.4 Transient voltages may also vary over a wide range in both the time to reach crest value and the time to decay to half crest or to zero magnitude. The IEEE standard lightning impulse test (see 2.2) specifies a 1.2 by 50-μs negative polarity wave.1.1 This test method covers the determination of the dielectric breakdown voltage of insulating liquids in a highly divergent field under impulse conditions and has been found applicable to liquids of petroleum origin, natural and synthetic esters.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The widespread use of glassed-steel equipment in highly corrosive chemical processes has made it necessary to detect weak spots in the coating and repair them before catastrophic failure occurs in service. This test is intended to detect discontinuities and thin areas in a glass coating on metal to ensure that the coating is defect free and has sufficient thickness to withstand the prescribed service conditions. A test voltage may be selected at any desired value up to 20k V, thus making the test applicable to a wide range of thickness requirements. When, because of bubbles or defects, the thickness of glass at any spot is less than enough to withstand the applied voltage, a puncture results with an accompanying indication of a defect. Remedial action is then required to repair the defect before the equipment can be used for corrosive service. (When such defects are found before the equipment leaves the manufacturer's plant another application of glass can usually be applied and fired to become an integral part of the coating.)1.1 This test method covers the determination of the reliability of glass coating on metal and is intended for use by manufacturers of equipment that is designed to withstand highly corrosive conditions where a failure of the coating in service would cause extreme damage to the exposed metal. Its use outside the manufacturer's plant is discouraged because improper or indiscriminate testing can cause punctures that are difficult to repair without returning the equipment to the manufacturer's plant. This test method detects not only existing discontinuities in the glass coating, but also areas where the glass may be thin enough to be likely to result in premature failure in service.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Dielectric withstand voltage testing is useful for design verification, quality control of materials, and workmanship.4.2 This test method is used to verify that the membrane switch or printed electronic device can operate safely at its rated voltage, and withstand momentary overpotentials due to switching, surges and other similar electrical phenomena.4.3 Specific areas of testing are, but not limited to:4.3.1 Conductor/dielectric/conductor crossing point,4.3.2 Close proximity of conductors, and4.3.3 Any other conductive surface such as shielding or metal backing panel.4.4 Dielectric withstand voltage testing may be destructive and units that have been tested should be considered unreliable for future use.4.5 Testing using ac voltage may be useful for switches intended for control circuits powered by ac voltages.1.1 This test method covers the verification of a specified dielectric withstand voltage or dielectric breakdown voltage of a membrane switch or printed electronic device.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method is intended to provide a means for evaluating the current-voltage cycling stability at 90°C (194°F) of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 This test method covers the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 This test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 This test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 This test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 This test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method is intended to provide a means for evaluating the current-voltage cycling stability at ca. 22°C of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 The test described is a method for the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 The test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 The test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 The test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 The test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in metric (SI) units are to be regarded as the standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
52 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页