微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification deals with carbon and alloy steel forgings (including gas bottles) for use in thin-walled pressure vessels. Covered here are the following grades of steel forgings: Grade A; Grade B; Grade C; Grade D; Grade E, Classes 55, 65, and 70; Grade F, Classes 55, 65, and 70; Grade G, Classes 55, 65, and 70; Grade H, Classes 55, 65, and 70; Grade J, Classes 55, 65, and 70; Grade K; Grade L; Grade J, Class 110; and Grade M, Classes 85 and 100. Materials shall be manufactured by melting procedures, and optionally heat treated by normalization, normalization and tempering, or liquid-quenching and tempering. Heat and product analyses shall be performed wherein steel specimens shall conform to required chemical compositions of carbon, manganese, phosphorus, sulfur, silicon, nickel, chromium, molybdenum, and vanadium. Steel materials shall also undergo bending, flattening and hardness tests and shall conform to required values of tensile strength, yield strength, elongation, and hardness. Forgings shall be subjected to magnetic particle examination as well.1.1 This specification2 covers relatively thin-walled forgings (including gas bottles) for pressure vessel use. Three types of carbon steel and six types of alloy steel are included. Provision is made for integrally forging the ends of vessel bodies made from seamless pipe or tubing.NOTE 1: When working to the chemical and tensile requirements of this specification, the influence of wall thickness and cooling rate will necessarily eliminate certain forging sizes in each class.NOTE 2: Designations have been changed as follows:Current FormerlyGrade A Type IGrade B Type IIGrade C Type IIIGrade D Type IVGrade E Class 55 Type V Grade 1 Class 55Grade E Class 65 Type V Grade 1 Class 65Grade E Class 70 Type V Grade 1 Class 70Grade F Class 55 Type V Grade 2 Class 55Grade F Class 65 Type V Grade 2 Class 65Grade F Class 70 Type V Grade 2 Class 70Grade G Class 55 Type V Grade 3 Class 55Grade G Class 65 Type V Grade 3 Class 65Grade G Class 70 Type V Grade 3 Class 70Grade H Class 55 Type V Grade 4 Class 55Grade H Class 65 Type V Grade 4 Class 65Grade H Class 70 Type V Grade 4 Class 70Grade J Class 55 Type V Grade 5 Class 55Grade J Class 65 Type V Grade 5 Class 65Grade J Class 70 Type V Grade 5 Class 70Grade K Type VIGrade L Type VIIGrade J Class 110 Type VIIIGrade M Class 85 Type IX Class AGrade M Class 100 Type IX Class B1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 Unless the order specifies the applicable “M” specification designation (SI units), the material shall be furnished to inch-pound units.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the requirements for extruded- and compression-molded rod and heavy-walled tubing made from polytetrafluoroethylene (PTFE). Material covered by this specification is classified according to type (unfilled PTFE or other PTFE), grade (Grades 1 and 2, differentiated by means of the raw material used), and class (Class 1, 2, or 3, based on property requirements). The type, grade, and class may be further differentiated according to dimensional stability and internal defect requirements. The rod and heavy-walled tubing shall be manufactured from PTFE or recycled plastics in accordance with good commercial practice, with the color, finish, and internal defects of the PTFE products in conformity with the requirements specified. Visual inspection, examination for internal defects, and tests for specific gravity, tensile strength, elongation, dielectric strength, and melting point shall be performed and shall conform to the requirements specified.1.1 This specification is intended to be a means of calling out plastic product used in the fabrication of end items or parts.1.2 This specification covers requirements and test methods for the material, dimensions, and workmanship, and the properties of extruded- and compression-molded rod, and heavy-walled tube manufactured from granular unfilled PTFE resin in accordance with Specification D4894.1.3 This specification covers rod and heavy-walled tubing made wholly from polytetrafluoroethylene and produced in accordance with good commercial practice.1.4 The properties included in this specification are those required for the compositions covered. Requirements necessary to identify particular characteristics important to specialized applications are described by using the classification system given in Section 4.1.5 This specification allows for the use of recycled plastics as defined in Guide D7209.1.6 The values stated in inch-pound units are to be regarded as the standard in all property and dimensional tables.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Note 1—Although this specification and ISO 13000-1 and ISO 13000-2 differ in approach or detail, data obtained using either are technically equivalent.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Multiaxial forces often tend to introduce deformation and damage mechanisms that are unique and quite different from those induced under a simple uniaxial loading condition. Since most engineering components are subjected to cyclic multiaxial forces it is necessary to characterize the deformation and fatigue behaviors of materials in this mode. Such a characterization enables reliable prediction of the fatigue lives of many engineering components. Axial-torsional loading is one of several possible types of multiaxial force systems and is essentially a biaxial type of loading. Thin-walled tubular specimens subjected to axial-torsional loading can be used to explore behavior of materials in two of the four quadrants in principal stress or strain spaces. Axial-torsional loading is more convenient than in-plane biaxial loading because the stress state in the thin-walled tubular specimens is constant over the entire test section and is well-known. This practice is useful for generating fatigue life and cyclic deformation data on homogeneous materials under axial, torsional, and combined in- and out-of-phase axial-torsional loading conditions.1.1 The standard deals with strain-controlled, axial, torsional, and combined in- and out-of-phase axial torsional fatigue testing with thin-walled, circular cross-section, tubular specimens at isothermal, ambient and elevated temperatures. This standard is limited to symmetric, completely-reversed strains (zero mean strains) and axial and torsional waveforms with the same frequency in combined axial-torsional fatigue testing. This standard is also limited to characterization of homogeneous materials with thin-walled tubular specimens and does not cover testing of either large-scale components or structural elements.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Thin-walled tube samples are used for obtaining intact specimens of fine-grained soils for laboratory tests to determine engineering properties of soils (strength, compressibility, permeability, and density). Fig. 2 shows the use of the sampler in a drill hole. Typical sizes of thin-walled tubes are shown on Table 1. The most commonly used tube is the 3-in. [75 mm] diameter. This tube can provide intact samples for most laboratory tests; however some tests may require larger diameter tubes. Tubes with a diameter of 2 in. [50 mm] are rarely used as they often do not provide specimens of sufficient size for most laboratory testing.1.5(A) The three diameters recommended in Table 2 are indicated for purposes of standardization, and are not intended to indicate that sampling tubes of intermediate or larger diameters are not acceptable. Lengths of tubes shown are illustrative. Proper lengths to be determined as suited to field conditions. Wall thickness may be changed (5.2.1, 6.3.2). Bwg is Birmingham Wire Gauge (Specification A513/A513M).5.1.1 Soil samples must undergo some degree of disturbance because the process of subsurface soil sampling subjects the soil to irreversible changes in stresses during sampling, extrusion if performed, and upon removal of confining stresses. However, if this practice is used properly, soil samples suitable for laboratory testing can be procured. Soil samples inside the tubes can be readily evaluated for disturbance or other features such as presence of fissures, inclusions, layering or voids using X-ray radiography (D4452) if facilities are available. Field extrusion and inspection of the soil core can also help evaluate sample quality.5.1.2 Experience and research has shown that larger diameter samples (5 in. [125 mm]) result in reduced disturbance and provide larger soil cores available for testing. Agencies such as the U.S Army Corps of Engineers and US Bureau of Reclamation use 5-in. [125-mm] diameter samplers on large exploration projects to acquire high quality samples (1, 2, 3).35.1.3 The lengths of the thin-walled tubes (tubes) typically range from 2 to 5 ft [0.5 to 1.5 m], but most are about 3 ft [1 m]. While the sample and push lengths are shorter than the tube, see 7.4.1.5.1.4 This type of sampler is often referred to as a “Shelby Tube.”5.2 Thin-walled tubes used are of variable wall thickness (gauge), which determines the Area Ratio (Ar). The outside cutting edge of the end of the tube is machined-sharpened to a cutting angle (Fig. 1). The tubes are also usually supplied with a machine-beveled inside cutting edge which provides the Clearance Ratio (Cr). The recommended combinations of Ar, cutting angle, and Cr are given below (also see 6.3 and Appendix X1, which provides guidance on sample disturbance).5.2.1 Ar should generally be less than 10 to 15 %. Larger Ar of up to 25 to 30 % have been used for stiffer soils to prevent buckling of the tube. Tubes of thicker gauge may be requested when re-use is anticipated (see 6.3.2).5.2.2 The cutting edge angle should range from 5 to 15 degrees. Softer formations may require sharper cutting angles of 5 to 10 degrees, however, sharp angles may be easily damaged in deeper borings. Cutting edge angles of up to 20 to 30 degrees have been used in stiffer formations in order to avoid damage to the cutting edges.5.2.3 Optimum Cr depends on the soils to be tested. Soft clays require Cr of 0 or less than 0.5 %, while stiffer formations require larger Cr of 1 to 1.5 %.5.2.3.1 Typically, manufacturers supply thin-walled tubes with Cr of about 0.5 to 1.0 % unless otherwise specified. For softer or harder soils Cr tubes may require special order from the supplier.5.3 The most frequent use of thin-walled tube samples is the determination of the shear strength and compressibility of soft to medium consistency fine-grained soils for engineering purposes from laboratory testing. For determination of undrained strength, unconfined compression or unconsolided, undrained triaxial compression tests are often used (Test Methods D2166 and D2850). Unconfined compression tests should be only used with caution or based on experience because they often provide unreliable measure of undrained strength, especially in fissured clays. Unconsolidated undrained tests are more reliable but can still suffer from disturbance problems. Advanced tests, such as consolidated, undrained triaxial compression (Test Method D4767) testing, coupled with one dimensional consolidation tests (Test Methods D2435 and D4186) are performed for better understanding the relationship between stress history and the strength and compression characteristics of the soil as described by Ladd and Degroot, 2004 (4).5.3.1 Another frequent use of the sample is to determine consolidation/compression behavior of soft, fine-grained soils using One-Dimensional Consolidation Test Methods D2435 or D4186 for settlement evaluation. Consolidation test specimens are generally larger diameter than those for strength testing and larger diameter soil cores may be required. Disturbance will result in errors in accurate determination of both yield stress (5.3) and stress history in the soil. Disturbance and sample quality can be evaluated by looking at recompression strains in the One-Dimensional Consolidation test (see Andressen and Kolstad (5)).5.4 Many other sampling systems use thin-walled tubes. The piston sampler (Practice D6519) uses a thin-walled tube. However, the piston samplers are designed to recover soft soils and low-plasticity soils and the thin-walled tubes used must be of lower Cr of 0.0 to 0.5 %. Other piston samplers, such as the Japanese and Norwegian samplers, use thin-walled tubes with 0 % Cr (see Appendix X1).5.4.1 Some rotary soil core barrels (Practice D6169-Pitcher Barrel), used for stiff to hard clays use thin-walled tubes. These samplers use high Cr tubes of 1.0 to 1.5 % because of core expansion and friction.5.4.2 This standard may not address other composite double-tube samplers with inner liners. The double-tube samplers are thicker walled and require special considerations for an outside cutting shoe and not the inner thin-walled liner tube.5.4.3 There are some variations to the design of the thin-walled sampler shown on Fig. 2. Figure 2 shows the standard sampler with a ball check valve in the head, which is used in fluid rotary drilled holes. One variation is a Bishop-type thin-walled sampler that is capable of holding a vacuum on the sampler to improve recovery (1, 2). This design was used to recover sand samples that tend to run out of the tube with sampler withdraw.5.5 The thin-walled tube sampler can be used to sample soft to medium stiff clays4. Very stiff clays4 generally require use of rotary soil core barrels (Practice D6151, Guide D6169). Mixed soils with sands can be sampled but the presence of coarse sands and gravels may cause soil core disturbance and tube damage. Low-plasticity silts can be sampled but in some cases below the water table they may not be held in the tube and a piston sampler may be required to recover these soils. Sands are much more difficult to penetrate and may require use of smaller diameter tubes. Gravelly soils cannot be sampled and gravel will damage the thin-walled tubes.5.5.1 Research by the US Army Corps of Engineers has shown that it is not possible to sample clean sands without disturbance (2). The research shows that loose sands are densified and dense sands are loosened during tube insertion because the penetration process is drained, allowing grain rearrangement.5.5.2 The tube should be pushed smoothly into the cohesive soil to minimize disturbance. Use in very stiff and hard clays with insertion by driving or hammering cannot provide an intact sample. Samples that must be obtained by driving should be labeled as such to avoid any advanced laboratory testing for engineering properties.5.6 Thin-walled tube samplers are used in mechanically drilled boreholes (Guide D6286). Any drilling method that ensures the base of the borehole is intact and that the borehole walls are stable may be used. They are most often used in fluid rotary drill holes (Guide D5783) and holes using hollow-stem augers (Practice D6151).5.6.1 The base of the boring must be stable and intact. The sample depth of the sampler should coincide with the drilled depth. The absence of slough, cuttings, or remolded soil in the top of the samples should be confirmed to ensure stable conditions (7.4.1).5.6.2 The use of the open thin-walled tube sampler requires the borehole be cased or the borehole walls must be stable as soil can enter the open sampler tube from the borehole wall as it is lowered to the sampling depth. If samples are taken in uncased boreholes the cores should be inspected for any sidewall contamination.5.6.3 Do not use thin-walled tubes in uncased fluid rotary drill holes below the water table. A piston sampler (Practice D6519) must be used to ensure that there is no fluid or sidewall contamination that would enter an open sampling tube.5.6.4 Thin-walled tube samples can be obtained through Dual Tube Direct Push casings (Guide D6282).5.6.5 Thin-walled tube samples are sometimes taken from the surface using other hydraulic equipment to push in the sampler. The push equipment should provide a smooth continuous vertical push.5.7 Soil cores should not be stored in steel tubes for more than one to two weeks, unless they are stainless steel or protected by corrosion resistant coating or plating (6.3.2), see Note 1. This is because once the core is in contact with the steel tube, there are galvanic reactions between the tube and the soil which generally cause the annulus core to harden with time. There are also possible microbial reactions caused by temporary exposure to air. It is common practice to extrude or remove the soil core either in the field or at the receiving laboratory immediately upon receipt. If tubes are for re-use, soil cores must be extruded quickly within a few days since damage to any inside coatings is inevitable in multiple re-use. Extruded cores can be preserved by encasing the cores in plastic wrap, tin foil, and then microcrystalline wax to preserve moisture.5.7.1 Soil cores of soft clays may be damaged in the extrusion process. In cases where the soil is very weak, it may be required to cut sections of the tube to remove soil cores for laboratory testing. See Appendix X1 for recommended techniques.NOTE 1: The one to two week period is just guideline typically used in practice. Longer time periods may be allowed depending on logistics and the quality assurance requirements of the exploration plan.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective sampling. Users of this practice are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice covers a procedure for using a thin-walled metal tube to recover intact soil samples suitable for laboratory tests of engineering properties, such as strength, compressibility, permeability, and density. This practice provides guidance on proper sampling equipment, procedures, and sample quality evaluation that are used to obtain intact samples suitable for laboratory testing.1.2 This practice is limited to fine-grained soils that can be penetrated by the thin-walled tube. This sampling method is not recommended for sampling soils containing coarse sand, gravel, or larger size soil particles, cemented, or very hard soils. Other soil samplers may be used for sampling these soil types. Such samplers include driven split barrel samplers and soil coring devices (Test Methods D1586, D3550, and Practice D6151). For information on appropriate use of other soil samplers refer to Practice D6169.1.3 This practice is often used in conjunction with rotary drilling (Practice D1452 and Guides D5783 and D6286) or hollow-stem augers (Practice D6151). Subsurface geotechnical explorations should be reported in accordance with Practice D5434. This practice discusses some aspects of sample preservation after the sampling event. For more information on preservation and transportation process of soil samples, consult Practice D4220.1.4 This practice may not address special considerations for environmental or marine sampling; consult Practices D6169 and D3213 for information on sampling for environmental and marine explorations.1.5 Thin-walled tubes meeting requirements of 6.3 can also be used in piston samplers, or inner liners of double tube push or rotary-type soil core samplers (Pitcher barrel, Practice D6169). Piston samplers in Practice D6519 use thin-walled tubes.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.7 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.8 The values stated in either inch-pound units or SI units presented in brackets are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Personnel utilizing reference radiographs to this standard shall be qualified to perform radiographic interpretation in accordance with a nationally or internationally recognized NDT personnel qualification practice or standard such as ANSI/ASNT-CP-189, SNT-TC-1A, NAS 410, ISO 9712, or a similar document and certified by the employer or certifying agency, as applicable. The practice or standard used and its applicable revision shall be identified in the contractual agreement between the using parties. Personnel shall be authorized to perform radiographic interpretation by the employer. A certified Level III shall be available to assist with interpreting specifications and product requirements as applied to the reference radiographs (if the Level III is the radiographic interpreter, this may be the same person).4.2 Graded reference radiographs are intended to provide a guide enabling recognition of specific casting discontinuity types and relative severity levels that may be encountered during typical fabrication processes. Reference radiographs containing ungraded discontinuities are provided as a guide for recognition of a specific casting discontinuity type where severity levels may not be needed. These reference radiographs are intended as a basis from which manufacturers and purchasers may, by mutual agreement, select particular workmanship classes to serve as standards representing minimum levels of acceptability (see Sections 6 and 7).4.3 Reference radiographs represented by this standard may be used, as agreed upon in a purchaser supplier agreement, for energy levels, thicknesses, or both, outside the range of this standard when determined applicable for the casting service application. Overlapping severity levels of similar discontinuity categories and energy level range of Reference Radiographs E186 reference radiographs may alternatively be used, as determined appropriate for the casting service application, if so agreed upon in a purchaser supplier agreement (see 5.1).4.4 Procedures for evaluation of production radiographs using applicable reference radiographs of this standard are prescribed in Section 8; however, there may be manufacturing-purchaser issues involving specific casting service applications where it may be appropriate to modify or alter such requirements. Where such modifications may be appropriate for the casting application, all such changes shall be specifically called-out in the purchaser supplier agreement or contractual document. Section 9 addresses purchaser supplier requisites where weld repairs may be required.1.1 These reference radiographs2 illustrate various categories, types, and severity levels of discontinuities occurring in steel castings that have section thicknesses of 41/2 to 12 in. (114 to 305 mm). The reference radiograph films are an adjunct to this document and must be purchased separately from ASTM International, if needed (see 2.2). Categories and severity levels for each discontinuity type represented by these reference radiographs are described in 1.2.NOTE 1: The basis of application for these reference radiographs requires a prior purchaser supplier agreement of radiographic examination attributes and classification criterion as described in Sections 4, 6, and 7 of this standard. Reference radiographs for other steel casting thicknesses may be found in Reference Radiographs E446 and E186. Reference Radiographs E186 provides some overlap of severity levels for similar discontinuity categories within the same energy level range (see 4.3, 5.1, and 6.3).1.2 These reference radiographs consist of two separate volumes as follows1.2.1 Volume I: 2-MV X-rays and Cobalt-60—This includes cobalt-60 or equivalent isotope radiation and from 2-MV up to 4-MV X-rays. Set of 28 plates in 81/2 by 11 in. (216 by 279 mm) ring binders.1.2.2 Volume II: 4-MV to 30-MV X-rays—Set of 28 plates in 8 1/2 by 11 in. (216 by 279 mm) ring binders.1.2.3 Unless otherwise specified in a purchaser supplier agreement (see 1.1), each volume is for comparison only with production radiographs produced with radiation energy levels within the thickness range covered by this standard. Each volume consists of three categories of graded discontinuities in increasing severity levels, and three categories of ungraded discontinuities. Reference radiographs containing ungraded discontinuities are provided as a guide for recognition of a specific casting discontinuity type where severity levels are not needed. Following is a list of discontinuity categories, types, and severity levels for the adjunct reference radiographs of this standard:1.2.3.1 Category A—Gas porosity; severity levels 1 through 5.1.2.3.2 Category B—Sand and slag inclusions; severity levels 1 through 5.1.2.3.3 Category C—Shrinkage; three types:(1) Ca Linear Shrinkage—Severity levels 1 through 5 (called Type 1 in previous revisions).(2) Cb Feathery Shrinkage —Severity levels 1 through 5 (called Type 2 in previous revisions).(3) Cc Sponge Shrinkage—Severity levels 1 through 5 (called Type 3 in previous revisions).1.2.3.4 Category D—Crack; one illustration D5 in pre-1972 documents.1.2.3.5 Category E—Hot tear; one illustration D3 in pre-1972 documents.1.2.3.6 Category F—Insert; one illustration EB2 in pre-1972 documents.1.3 From time to time, there may be minor changes to the process for manufacturing of the reference radiograph adjunct materials. These changes could include changes in the films or processing chemicals used, changes in the dies or printing for the cardboard mats, etc.; however, in all cases, these changes are reviewed by the Illustration Monitoring Subcommittee and all reference radiographs are reviewed against a fixed prototype image to ensure that there are no changes to the acceptance level represented by the reference radiographs. Therefore, the adjunct reference radiographs remain valid for use with this standard regardless of the date of production or the revision level of the text standard.1.4 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the testing and requirements of extruded and compression molded polytetrafluoroethylene (PTFE) rods and heavy-walled tubing manufactured from virgin or reprocessed PTFE resin. Covered here are three types of PTFE fluorocarbon materials as follows: Type I (premium), materials having maximum physical and electrical properties to meet rigid requirements; Type II (general purpose), materials having properties required of general electrical, mechanical, and chemical applications; and Type III, materials for noncritical chemical, electrical, and mechanical applications. These types are further subdivided into two grades, and even further into four classes as appropriate. Sampled specimens shall be appropriately tested on the following: workmanship and appearance (color, finish, and internal defects); specific gravity; tensile strength and elongation; dielectric strength; dimensional stability; and melting point.1.1 This specification covers extruded polytetrafluoroethylene (PTFE) rod, heavy-walled tubing, and basic shapes manufactured from the PTFE resin of Specification D4894 and reprocessed PTFE resin (as defined in Guide D7209).1.2 The specification covers all sizes of rod, tubing, and basic shapes with a wall thickness of 1.6 mm (1/16 in.) or greater. These materials must be made wholly from PTFE and produced in accordance with good commercial ram extrusion practices.NOTE 1: This specification and ISO/DIS 13000-1 (1997) and ISO/DIS 13000-2 (1997) differ in approach, however, data obtained using either are technically equivalent.NOTE 2: For compression molded PTFE materials, see Specification D3294. Material that can be certified to Specification D3294 may be substituted for Specification D1710, however the reverse in not true.1.3 The values stated in SI units, as detailed in IEEE/ASTM SI 10 are to be regarded as the standard. The inch-pound units given in parentheses are provided for information only.1.4 The following precautionary caveat pertains to the test methods portion, Section 12, only of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers one grade of martensitic stainless steel and several grades of ferritic steel castings for cylindrical (shells), valve chests, throttle valves, and other heavy-walled castings for steam turbine applications. The steel shall be made by the open-hearth or electric-furnace process. Deoxidation of the carbon and low-alloy steel grades shall be by manganese and silicon. The castings shall be heat treated in either the normalized, tempered, or stress-relieved conditions. Mechanical properties such as tensile strength, yield strength, and elongation shall be determined by subjecting the specimens to a tension test.1.1 This specification covers one grade of martensitic stainless steel and several grades of ferritic steel castings for cylinders (shells), valve chests, throttle valves, and other heavy-walled castings for steam turbine applications.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.2.1 Within the text, the SI units are shown in brackets.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
22 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页