微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This safety specification establishes the performance requirements for tipover restraint(s) used with clothing storage unit(s). It is intended to assess the strength of the tipover restraint only, and does not address the in situ performance of the tipover restraint. This specification also defines the test method for tipover restraints, along with installation instructions and labeling requirements.1.1 This safety specification is intended to define the test method and other requirements for tipover restraints as required in Specification F2057.1.2 This specification assesses the strength of the tipover restraint only, and does not address the in situ performance of the tipover restraint.1.3 The values stated in inch‐pounds units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 The following safety hazard caveat pertains only to the test procedure portion, Section 4, of this safety specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The standards under the jurisdiction of Committee F23 and other technical committees can be used individually or as part of an integrated protocol in the development, selection, specification, and use of chemical protective clothing.4.2 The standards are intended as a means by which information can be requested, generated, and reported in a consistent, comparable manner.4.3 The suggested evaluation and test methods are recommended guidelines only. Test methods offer procedures for evaluating chemical protective clothing at standardized conditions to allow comparison.4.4 The information on clothing performance must be combined with professional judgment and a clear understanding of the clothing application to provide the best protection to the worker. All chemical protective clothing use must be based on a hazard assessment to determine the risks for exposure to chemicals and other hazards. Conduct hazard assessments in accordance with 29 CFR 1910.132.4.5 Chemical protective clothing intended for use during hazardous materials emergencies shall be evaluated against and conform to NFPA 1991, Standard on Vapor-Protective Ensemble for Hazardous Materials Emergencies, or NFPA 1992, Standard on Liquid Splash-Protective Ensemble and Clothing for Hazardous Materials Emergencies, as appropriate for the type of emergency. For emergencies involving release of chemical agents during terrorism incidents, chemical protective clothing shall be evaluated against and conform to NFPA 1994, Standard on Protective Ensemble for Chemical/Biological Terrorism Incidents.4.6 Recommendations for labeling chemical protective clothing are provided in Practice F1301, recommendations for implementing a chemical protective clothing program are provided in Practice F1461, and recommendations for preparing care and maintenance instructions are provided in Practice F2061.4.7 Appendix X1 is an example of how several of the referenced standards can be combined into a protocol to select the most suitable chemical protective clothing for a given application. Briefly, the process is one of defining the requirements of the application and then (by testing) eliminating those candidates that are unsuitable.4.8 Appendix X2 provides a chart to cross reference U.S. Standards with European and International Standards. This chart shows only analogous standards for measuring the same property or evaluating the similar chemical protective clothing and does not imply that results from different tests will be comparable.1.1 This guide is intended to aid in the application of standards for the development, specification, and selection of chemical protective clothing with the ultimate goal of maintaining the safety and health of workers who come into contact with hazardous chemicals.1.2 This guide provides a short description of each referenced standard and then makes specific recommendations for the use of these standards. The referenced standards are organized under the following headings: Material Chemical Resistance, Material Physical Properties, Seam and Closure Performance, and Overall Clothing Performance.1.3 No protocol can ensure the selection of protective clothing that guarantees worker protection. The purpose of testing is to generate data and information that will allow the selection of the most appropriate clothing. Ultimately, clothing selection is based on technical evaluation of available information and professional assessment of risk.1.4 The values stated in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This guide establishes a recommended list of challenge chemicals to encourage those who evaluate chemical protective clothing to test a minimum number of chemicals in common. This list will simplify the comparison of data from different sources.5.2 This guide may also serve material developers or evaluators in screening candidate protective clothing materials.5.3 Test methods applicable to the use of this guide include, but are not limited to, Test Methods F903 and F739.5.3.1 The battery of chemical gases shall not be used for testing material penetration resistance because Test Method F903 has been designed for measuring liquid penetration only.5.3.2 Evaluation of materials against the gaseous chemical battery is primarily intended for those materials used in the construction of totally encapsulating protective suits or other clothing items that are designed to prevent exposure to chemical vapors or gases. Only vapor-protective clothing that has been evaluated for and has demonstrated appropriate levels of inward leakage against gases and vapor is appropriate for protection against vapors and gases. Protective clothing that only covers part of the body or that does not have vapor-resistant closures, closures, or interfaces to other ensemble components does not provide protection against hazardous chemical vapors and gases.NOTE 1: Methods to evaluate the vapor-protective performance of protective clothing ensembles include, but are not limited to, Test Method F1052 and Test Method F2588.5.4 The presence of any chemical in this battery does not connote any special significance of the chemical for protecting workers from chemical hazards. This battery of chemicals is intended to represent a range of chemical classes, hazards, physical characteristics, and other factors. Not of all of the chemicals in this battery have any significance from a skin toxicity or irritation perspective.5.5 Chemical resistance of a protective clothing material against a specific chemical or list of chemicals does not infer the chemical resistance of that protective material against other chemicals.1.1 The purpose of this guide is to provide a recommended list of both liquid and gaseous chemicals for evaluating protective clothing materials in testing programs.1.2 Results derived from testing programs using these lists of test chemicals are not intended for the definitive characterization of protective clothing materials.1.3 This list of test chemicals is not inclusive of all chemical challenges; the chemicals were chosen to represent broad ranges of liquid and gaseous chemical classes and properties. Not all chemical classes are represented. Other chemicals, especially those of interest to the manufacturer or user, should be tested in addition to those recommended in this guide.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. A specific hazards statement is given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This specification establishes minimum design, performance, and labeling criteria for both primary and secondary protective clothing for use in operations involving molten substances and related thermal hazards.NOTE 1: Standardized molten splash testing of both primary and secondary protective materials and garments as listed in this specification utilize pure molten materials, typically iron or aluminum. In practice, users of protective clothing for metal splash protection may routinely work with alloys. Protective clothing covered by this specification may or may not perform similarly with alloys of various metals. The entity specifying the protective clothing shall determine if the protective clothing is appropriate for their specific alloy.4.1.1 Requirements are specifically established for materials used in the construction of primary and secondary protective clothing on the basis of performance attributes that are considered important for worker protection. In some cases, different minimum levels for the same performance properties are set between primary and secondary protective clothing due to the differences in the expected performance for these two types of protective clothing.4.1.2 Additional requirements are established for primary and secondary protective clothing items in terms of the minimum design characteristics and performance features for other materials and components used in the construction of the clothing.4.2 This specification can be applied to either protective clothing materials or protective clothing, or both.4.2.1 The application for protective clothing materials involves meeting the respective requirements for either primary or secondary protective clothing materials found in Section 5.4.2.2 The application for protective clothing involves meeting the respective requirements for either primary or secondary protective clothing found in Section 6, which includes construction of the clothing with protective clothing materials that meet the requirements in Section 5.1.1 This performance specification establishes the minimum design and performance requirements for protective clothing and protective clothing materials for both primary and secondary protection from exposure to molten substances and related thermal hazards.1.2 This performance specification is not intended to address protection from hot liquids or from specialized forms of heat and flame protection such as any fire fighting application.1.3 This performance specification describes the properties of specific textile materials in their material or garment composite form as tested by laboratory methods and is not intended to be used to appraise the thermal hazard or risk under actual conditions. However, it is acceptable to use information on the thermal performance of clothing made from textile materials conforming to this specification as an element in thermal risk assessment which takes into account all factors pertinent to the thermal hazard of a particular end use.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.5 This performance specification does not purport to address all of the safety concerns, if any, associated with the use of compliant protective clothing or protective clothing materials. It is the responsibility of the persons or organizations that use this performance specification to conduct a hazard and risk assessment to determine the applicability of this performance specification to the intended application of the protective clothing or protective clothing materials, and to establish appropriate safety, health, and environmental practices.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is normally used to evaluate the barrier effectiveness against penetration of liquids through materials, seams, closures, or other planar assemblies used in protective clothing and specimens from finished items of protective clothing.5.1.1 Finished items of protective clothing include gloves, arm protectors, aprons, coveralls, suits, hoods, boots, and similar items.5.1.2 The phrase “specimens from finished items” is permitted to include continuous regions of protective clothing items as well as seamed or other discontinuous regions of protective clothing.5.1.3 The types of specimens are limited to those that are relatively flat (planar) that are capable of being sealed in the test cell specified in this test method without peripheral leakage.5.2 A substitute challenge liquid (for example, water or isopropanol) is appropriate in some cases to generalize material penetration resistance to liquids. However, it is possible that differences in chemical and molecular properties (for example, surface tension) may lead to different results.5.3 In addition to the failure mode where a liquid finds a pathway for penetration through a void, imperfection, or defect in material or clothing subassembly, some selected chemicals cause degradation of barrier material, film, or coating, leading to penetration over extended periods of contact.75.4 Five different procedures for how the specimen is exposed to the liquid are provided in Table 1. In this test method, all procedures involve liquid exposure that is continuous over the duration of the test. These procedures entail different hydrostatic pressures and durations of liquid exposure.5.4.1 Procedures A, B, and C apply a set pressure (6.9 or 13.8 kPa [1 or 2 psig]) for a specified period of time (1 or 10 min) over a 15- or 60-min liquid exposure time.5.4.2 Procedures A and B represent the originally established methods of liquid contact developed by the National Institute for Occupational Safety and Health, where Procedure A involves the application of a test pressure (13.8 kPa [2 psig]) that has been found to discriminate the liquid barrier performance of materials, while a lower pressure (6.9 kPa [1 psig]) is used for Procedure B to accommodate materials that exhibit ballooning or extension when the 13.8 kPa (2 psig) pressure is applied.8,9 Both procedures entail exposure of the specimen for 5 min at ambient pressure followed by 10 min of exposure of the specimen to the test pressure.5.4.3 Procedure C was developed to account for potentially longer exposures where failure may also occur as the result of material or assembly degradation. Procedure C uses a 13.8 kPa (2 psig) test pressure for a portion of the test where the specimen is first exposed to the liquid at ambient pressure for 5 min, followed by 1 min at 13.8 kPa (2 psig), and continuing for 54 additional minutes at ambient pressure.5.4.4 Procedure D involves the sequential increase of pressure from ambient (0 kPa [0 psig]) to 68.9 kPa (10 psig) in increments of 3.5 kPa (0.5 psig) in 1-min intervals until liquid penetration is observed at a specific test pressure. The time interval between changes in pressure is set at 1 min to coincide with the time of applied pressure in Procedure C.5.4.5 Procedure E permits the test method user to specify the pressures and duration of the specimen’s exposure to the liquid.5.5 Different results are reported by the different procedures.5.5.1 Procedures A, B, and C results are reported as “pass” or “fail” for each replicate. Passing results indicate that no liquid penetration was observed over the duration of the test exposure.5.5.2 Procedure D results are reported as the test pressure at which liquid penetration was observed for each replicate.5.6 The choice of pressure/time sequence and type of test result are dependent on the objectives of the testing.5.6.1 Procedure C is specified in several different National Fire Protection Association standards for establishing the minimum barrier performance of protective clothing materials, seams, and closures of first responder protective clothing.5.6.2 Procedure D may be used when the pressure where penetration occurs is sought without a set pressure pass/fail criterion. Procedure D also has utility for assessing the robustness of protective clothing materials and assemblies as part of quality systems. It is also possible to use Procedure D to supplement the pass/fail results provided by Procedures A, B, and C.5.6.3 Procedure E permits setting a specific sequence of pressure/time exposures based on the specific needs for the testing.5.6.4 In this test method, a hydrostatic pressure is applied but does not necessarily correlate with a mechanical pressure against a semi-rigid or rigid surface.5.6.5 It is recommended that a human factors investigation, hazard/risk exposure assessment, or similar study be conducted to determine the most suitable procedure for relating the choice of a specific procedure for measuring protective clothing material liquid penetration resistance to the intended protective performance of the clothing material.5.7 This test method permits the use of a retaining screen for preventing the overextension of a specimen as pressure is applied. However, it is important that the selected retaining screen does not interfere with the observation of liquid penetration or affect the sealing of the specimen in the test cell.5.8 A critical feature of the test is how the specimen is sealed in the test cell. Inadequate sealing of the specimen can lead to a false result (observed liquid penetration that is due to the method of sealing rather than penetration through the specimen). It is recommended that any special means used to seal specimens in the test cell be validated for providing sufficient integrity of the specimen in the test cell, not contribute to specimen damage, and not interfere with the observation of liquid penetration. Special means used to seal specimens in the test cell should be documented in the report.5.9 A minimum number of three test specimens is established for this test method. However, it is also appropriate to establish sampling plans based on a specific acceptable quality limit using a larger number of specimens, depending on the application of the test method. Potential sampling plans for this approach are found in MIL-STD-105E, ANSI/ASQC Z1.4, and ISO 2859-1.5.10 This test method does not address the liquid penetration of full protective clothing or ensembles. Use Test Method F1359 to provide a complete evaluation of the liquid integrity of protective clothing or ensembles, particularly areas of the clothing or ensembles that cannot be directly assessed by this test method, such as interface areas between different items of clothing and equipment.1.1 This test method is used to test specimens of protective clothing materials, assemblies such as seams and closures, or interfaces used in the construction of protective clothing. The resistance to visible penetration of the test liquid is determined with the liquid in continuous contact with the normally outside (exterior) surface of the test specimen.1.2 This test method includes different procedures for maintaining the liquid in contact with the test specimen in terms of the length of exposure and the pressure applied. Suggestions are provided for how to select an appropriate procedure for liquid contact.1.3 In some cases, significant amounts of hazardous materials will permeate specimens that pass the penetration tests. For more sensitive analyses, use either Test Method F739 or F1383 to determine permeation.1.4 This test method does not address penetration of vapors through protective clothing materials.1.5 This test method is not applicable to non-planar protective clothing materials, interfaces, or assemblies such as the fingertips or crotch areas of gloves, which are possible failure points.1.6 This test method does not address the liquid penetration resistance of full protective clothing items or ensembles. Use Test Method F1359 for this purpose.1.7 The values as stated in inch-pound units are to be regarded as the standard. The values in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 7.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is intended for the determination of the radiant heat resistance value of a material, a combination of materials, or a comparison of different materials used in flame-resistant clothing for workers exposed to radiant thermal hazards.5.2 This test method evaluates a material's heat transfer properties when exposed to a continuous and constant radiant heat source. Air movement at the face of the specimen and around the calorimeter can affect the measured heat transferred due to forced convective heat losses. Minimizing the air movement around the specimen and test apparatus will aid in the repeatability of the results.5.3 This test method maintains the specimen in a static, vertical position and does not involve movement, except that resulting from the exposure.5.4 This test method specifies two standard sets of exposure conditions: 21 kW/m2 (0.5 cal/cm2s) and 84 kW/m2 (2.0 cal/cm2s). Either can be used.5.4.1 If a different set of exposure conditions is used, it is likely that different results will be obtained.5.4.2 The optional use of other conditions representative of the expected hazard, in addition to the standard set of exposure conditions, is permitted. However, the exposure conditions used must be reported with the results along with a determination of the exposure energy level stability.5.5 This test method does not predict skin burn injury from the standardized radiant heat exposure.NOTE 4: See Appendix X4 for additional information regarding this test method and predicted skin burn injury.1.1 This test method rates the non-steady state thermal resistance or insulating characteristics of flame resistant clothing materials subjected to a continuous, standardized radiant heat exposure.1.1.1 This test method is not applicable to clothing materials that are not flame resistant.NOTE 1: The determination of a clothing material's flame resistance shall be made prior to testing and done in accordance with the applicable performance standard, specification standard, or both, for the clothing material's end use.1.1.2 This test method does not predict skin burn injury from the standardized radiant heat exposure, as it does not account for the thermal energy contained in the test specimen after the exposure has ceased.NOTE 2: See Appendix X4 for additional information regarding this test method and predicted skin burn injury.1.2 This test method is used to measure and describe the response of materials, products, or assemblies to heat under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound or other units that are commonly used for thermal testing.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is intended to determine the ignition resistance and burning characteristics of materials used in protective clothing where flame resistance is not the primary form of protection designated.5.1.1 Flame resistance is a distinctive property of clothing items designated for isolating parts of the body from anticipated flame hazards. It is possible that protective clothing designated for isolation from other hazards, such as those for chemical or biological protection, neither have flame resistance nor isolate the wearer from flame hazards. This test method can be used to evaluate the effects of flame impingement on protective clothing where flame resistance is not the primary objective of protection.5.1.2 When flame resistance is the primary protection offered by the protective clothing, alternative test methods can be used. A test method that is useful for evaluating flame resistance of textiles is Test Method D6413/D6413M. Classification Index D4723 contains descriptions and guidance on other flammability test methods for textiles.5.1.3 This test method is useful to determine the ignition resistance and burning characteristics of materials used in protective clothing not designated for flame resistance when the outer material surface is exposed to the flame. As such, it is particularly suited to protective clothing materials that are composed of different layers such as coated fabrics, laminates, or multilayer clothing systems.5.2 Alternative procedures for conducting either a 3-s or 12-s exposure are provided where one or the other flame application exposure times are applied. The choice of either the shorter or longer single exposure time is provided to permit an assessment of the effects for flame impingement on materials under short-term and long-term flame exposure conditions.5.3 Correlation of data from this test method with the ignition resistance and burning characteristics of protective clothing (not designated for flame resistance) under actual use conditions is not implied.1.1 This test method establishes a small-scale laboratory screening procedure for comparing the ignition resistance and burning characteristics of materials used in protective clothing where flame resistance is not the primary form of protection provided by the clothing.1.1.1 This test method shall not be used in applications where flame resistance is the primary form of protection offered by the protective clothing. Other flammability test methods are more appropriate for those materials.1.1.2 This test method provides a means for comparing ease of ignition and burning behavior of materials which include plastic or elastomeric films, coated fabrics, flexible laminates, multilayer material systems, or other protective clothing materials that are not designated for offering flame resistance as their primary form of protection.1.2 This test method is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.3 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.4 The values stated in SI units or other units shall be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method evaluates the ability of the construction and configuration of protective clothing or protective ensembles to resist liquid penetration. In most cases, the conditions used in this test method will not represent actual end-use conditions.5.2 Two different spray configurations are used for exposing the protective clothing or protective ensemble on a manikin.5.2.1 Procedure A involves five shower nozzles, with one nozzle directly above the clothed manikin and two nozzles each to upper and lower sides of the manikin that are all positioned in the same vertical plane. This spray configuration is intended to provide a full exposure of the entire protective clothing or protective ensemble system.5.2.2 Procedure B involves three shower nozzles that are positioned at different heights on a vertical line that is parallel to the manikin with the locations and direction of each nozzle set with respect to targets on the manikin. This spray configuration is intended to provide a direct assessment of garment features such as the front closure.5.3 The selected duration of the test is not intended to simulate user exposure to splashes of liquid substances but rather to provide sufficient time for enough liquid to penetrate to make visual detection easier. The default liquid exposure time for Procedure A is 20 min. The default liquid exposure time for Procedure B is 10 min.5.3.1 It is permissible to specify shorter test durations. It is recommended that the duration of exposure be the same in each manikin orientation.5.3.2 The choice of different test duration is partly based on the number of layers in the specimen being tested, some of which serve to absorb the surfactant-treated test liquid and result in attenuating the severity of the liquid challenge to the specimen.5.4 A nontoxic, non-foaming surfactant is added to water for this test method to simulate liquids of lower surface tensions. Liquids of specific interest can be simulated by treating water to achieve an equivalent surface tension.5.5 For protective clothing with water-repellent surfaces, the lower surface tension liquid will aid in the evaluation of the construction and configuration of the garment because it is less likely to be repelled and more likely to wet the protective clothing. This is especially useful for reusable garments whose water-repellent surface interferes with the evaluation of their construction and configuration when new, but is diminished after wearing and washing.5.6 Fluorescent or colored dyes are permitted to be added to the water to enhance detection of liquid penetration into the protective clothing or protective ensemble.5.7 This test method can be used by both manufacturers and end users to assess liquid penetration resistance. Manufacturers can use this test method to evaluate quality of construction and effectiveness of clothing and ensemble configurations.5.8 The clothing or ensemble is sized to fit the manikin. It is important that the clothing be selected to fit the manikin well since detection of liquid penetration requires as much contact as possible between the clothing or ensemble and the inner liquid-absorptive garment.5.9 Results on a mismatched size of clothing or ensemble shall not be used to generalize about a particular construction or configuration. Manikin fit potentially affects liquid penetration resistance determinations.5.10 There are no known restrictions to the types of protective clothing or protective ensembles that can be evaluated with this test method.5.11 In some cases protective clothing or protective ensembles that show no liquid penetration during this test method will still fail to protect wearers against specific liquids due to the material degradation, penetration, or permeation or the effects associated with the vapors of liquid chemicals.5.12 In some cases protective clothing or protective ensembles that show no liquid penetration during this test method will fail to protect wearers in specific circumstances as, for example, deluge or immersion.1.1 This test method measures the ability of protective clothing or protective ensembles to resist liquid penetration in the form of a shower spray with surfactant-treated water.1.2 This test method measures the liquid penetration resistance of the construction and configuration of the overall protective clothing or protective ensemble, but especially of seams, closures, and interfaces with other components such as gloves, boots, hoods, and respiratory protective equipment. It is intended that this test method be used to assess the liquid penetration resistance of protective clothing and protective ensembles as received from the manufacturer and worn in accordance with their instructions.1.3 Resistance of materials used in protective clothing to permeation or penetration can be determined in accordance with Test Method F739 (or Test Method F1383 or F1407) and Test Method F903, respectively. Alternatively, resistance of materials used in protective clothing to penetration by synthetic blood or liquids containing virus can be determined in accordance with Test Methods F1670/F1670M and F1671/F1671M.1.4 The integrity of vapor protective ensembles is measured by its ability to maintain positive internal pressure with Test Method F1052.1.5 The values in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 This test method is based on Test Method F903 for measuring resistance of chemical protective clothing materials to penetration by liquids. This test method is normally used to evaluate specimens from individual finished items of protective clothing and individual samples of materials that are candidates for items of protective clothing.5.1.1 Finished items of protective clothing include gloves, arm shields, aprons, gowns, coveralls, hoods, and boots.5.1.2 The phrase “specimens from finished items” encompasses seamed and other discontinuous regions as well as the usual continuous regions of protective clothing items.5.2 Medical protective clothing materials are intended to be a barrier to blood, body fluids, and other potentially infectious materials. Many factors can affect the wetting and penetration characteristics of body fluids, such as surface tension, viscosity, and polarity of the fluid, as well as the structure and relative hydrophilicity or hydrophobicity of the materials. The surface tension range for blood and body fluids (excluding saliva) is approximately 0.042 to 0.060 N/m (1) .7 To help simulate the wetting characteristics of blood and body fluids, the surface tension of the synthetic blood is adjusted to approximate the lower end of this surface tension range. The resulting surface tension of the synthetic blood is approximately 0.042 ± 0.002 N/m.5.3 The synthetic blood mixture is prepared with a red dye to aid in visual detection and a thickening agent to simulate the flow characteristics of blood.5.4 Part of the protocol in Procedures A and B in Table 1 for exposing the protective clothing material specimens with synthetic blood involves pressurization of the test cell to 13.8 kPa [2 psig]. This hydrostatic pressure has been documented to discriminate between protective clothing material performance and to correlate with visual penetration results that are obtained with a human factors validation (2). Some studies, however, suggest that mechanical pressures exceeding 345 kPa [50 psig] can occur during clinical use (3, 4). Therefore, it is important to understand that this test method does not simulate all the physical stresses and pressures that are exerted on protective clothing garments during actual use. This test method is offered to identify those protective clothing materials that warrant further evaluation with a microbiological challenge.5.5 Since this test method uses visual observation rather than analytical measurements for determination of penetration, use this test method as a preliminary evaluation for possible penetration of blood and other body fluids. Perform subsequent testing with a microbiological challenge and analytical technique using Test Method F1671.NOTE 1: No viral resistance claims can be made based on this test method, as materials can pass the test method and fail Test Method F1671.5.6 Testing without considering degradation by physical, chemical, and thermal stresses which could negatively impact the performance of the protective barrier could lead to a false sense of security. Consider tests which assess the impact of storage conditions and shelf life for disposable products, and the effects of laundering and sterilization for reusable products. The integrity of the protective barrier can also be compromised during use by such effects as flexing and abrasion (5) . It is also possible that prewetting by contaminating materials such as alcohol and perspiration can also compromise the integrity of the protective barrier. If these conditions are of concern, evaluate the performance of protective clothing materials for synthetic blood penetration following an appropriate preconditioning technique representative of the expected conditions of use.5.7 While this test method involves a qualitative determination of the protective clothing material resistance to penetration by synthetic blood under specific test conditions, it is possible to use this test method as a material quality control or assurance procedure.5.7.1 If this procedure is used for quality control, perform proper statistical design and analysis of the data when more than three specimens are tested. This type of analysis includes, but is not limited to, the number of individual specimens tested, the average percent passing or failing, or both, with a standard deviation. Data reported in this way helps to establish confidence limits concerning product performance. Examples of acceptable sampling plans are found in references such as MIL-STD-105, ANSI/ASQC Z1.4, and ISO 2859-1.1.1 This test method is used to evaluate the resistance of materials used in protective clothing to penetration by synthetic blood under conditions of continuous liquid contact. Protective clothing pass/fail determinations are based on visual detection of synthetic blood penetration.1.1.1 This test method is not always effective in testing protective clothing materials having thick, inner liners which readily absorb the synthetic blood.1.2 This test method is a means for selecting protective clothing materials for subsequent testing with a more sophisticated barrier test as described in Test Method F1671.1.3 This test method does not apply to all forms or conditions of blood-borne pathogen exposure. Users of the test method must review modes for work/clothing exposure and assess the appropriateness of this test method for their specific application.1.4 This test method addresses only the performance of materials or certain material constructions (for example, seams) used in protective clothing. This test method does not address the design, overall construction and components, or interfaces of garments, or other factors which may affect the overall protection offered by the protective clothing.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 This test method evaluates puncture resistance of protective clothing materials which may include: plastics or elastomeric films, coated fabrics, flexible materials, laminates, leathers, or textile materials.5.1.1 This test method uses hypodermic needles with specified dimensions as puncture probes.5.1.2 This test method evaluates needle puncture resistance of protective clothing materials, perpendicular to the material’s surface and with no supporting structure under/behind the material specimen.5.1.3 Evaluation of puncture resistance for snag-type puncture should be performed in accordance with Test Method D2582.5.1.4 Evaluation of puncture resistance for non-cutting puncture should be performed in accordance with Test Method F1342/F1342M.AbstractThis test method is used for determining the force required to cause a hypodermic needle to penetrate through protective clothing material. It defines three common hypodermic needles - 21-, 25-, 28- gauge needles - to evaluate puncture resistance of protective clothing. This test method does not attempt to simulate all use conditions. A number of variables which impact puncture resistance, such as stiffness of backing materials, presence of lubricants, and tension on the specimen, are not addressed by this test method.1.1 This test method is used to determine the force required to cause a sharp-edged hypodermic needle to penetrate through protective clothing material. The standard describes three needles that may be used: 21-, 25-, or 28-gauge needles.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Workers who have the potential to be exposed to molten metal contact shall be permitted to wear protective clothing using materials that have been evaluated for heat transfer using this test method.5.2 This test method rates materials that are intended for primary protective clothing against potential molten substance contact for their thermal insulating properties and their reaction to the test exposure.5.3 The protective performance, as determined by this test method, will relate to the actual end-use performance only to the degree that the end-use exposure is identical to the exposure used in the test method.5.4 Visual inspection of the specimen subjectively notes the material's resistance to molten substance contact.1.1 This test method covers the evaluation of materials' thermal resistance to heat transfer when exposed to a molten substance pour.1.1.1 This test method was validated using molten substances of aluminum, brass, and iron. The test shall be permitted to be adapted for use with other substances.1.2 This test method is applicable to materials from which finished primary protective apparel articles are made.1.3 This test method does not measure the flammability of materials, nor is it intended for use in evaluating materials exposed to any other thermal exposure.1.4 Use this test method to measure and describe the properties of materials, products, or assemblies in response to molten substance pour under controlled laboratory conditions and shall not be used to describe or appraise the thermal hazard or fire risk of materials, products, or assemblies under actual conditions. However, it is acceptable to use results of this test as elements of a thermal risk assessment which takes into account all the factors that are pertinent to an assessment of the thermal hazard of a particular end use.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
96 条记录,每页 15 条,当前第 2 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页