微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The CPL test is intended as a performance test to quantify the benefits of geosynthetics in pavement structures, as recommended by AASHTO R 50-09. Performance is predominantly defined in terms of S-TBR.5.2 The CPL test is a laboratory test used to accelerate rutting in a roadway cross section using a stationary cyclic plate. While the application of load differs from actual roads, the results from similarly constructed CPL tests are useful to evaluate and compare the performance of various products or designs. The results from these tests are most relevant to roads having similar design characteristics (material strengths and thicknesses).NOTE 1: The extrapolation of cyclic plate results to designs that deviate significantly from the parameters tested may not be accurate, and performance calculations made at significantly different load cycle levels than the expected service life of an actual pavement may not provide an accurate estimate of the benefits actually realized.5.3 The number of load cycles applied by the CPL device corresponds to the number of equivalent single-axle loads (ESALs) used in the AASHTO 1993 pavement design equation.5.4 The test method is applicable to geosynthetics and soils used in typical pavement applications.5.5 This test method produces test data that can be used to compare geosynthetic products, construction methods, and cross section configurations used in design of roads.5.6 This test can be used to characterize specific behaviors of the geosynthetic under the conditions tested by including sensors to measure stresses and strains within the pavement cross section or on the geosynthetic itself. Sensors should be appropriately sized and installed to minimize their influence on the results of the test.5.7 The relationship between load cycles and deformation is a function of the composite stiffness of the constructed system and the interdependence between the individual components of the design.1.1 This standard test method outlines the procedure used to determine the performance of unpaved and paved roadway cross sections, with and without geosynthetics, that are built in a controlled manner and tested using a stationary, cyclic load applied to the surface to simulate traffic.1.2 Test section performance from these tests is normally calculated as a function of life extension, but can also be determined based on structural improvement. Life extension is related to the number of load cycles that can be accommodated by a particular configuration when compared to a similarly constructed control. Structural improvements are based on elemental or system-wide stiffness increases.1.3 The cyclic plate load (CPL) test is intended to be a performance test conducted as closely as possible to as-built unpaved and paved roadway cross sections. It has been used as a tool to compare different geosynthetics; soil types, strengths, and thicknesses; and construction procedures for a variety of pavement applications.1.4 Units—The values stated in SI units are to be regarded as standard. Values in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 These test methods can be used to determine the effects of head and cone materials, design variables, manufacturing, and other conditions on the cyclic load-carrying ability of modular femoral heads mounted on the cones of femoral stem prostheses.4.2 The loading of modular femoral heads in vivo will, in general, differ from the loading defined in these methods. The results obtained here cannot be used to directly predict in-vivo performance. However, these methods are designed to allow for comparisons between the fatigue performance of different ceramic modular femoral head designs, when tested under similar conditions.4.3 These test methods may use actual femoral prostheses or neck-cone models of simplified geometry with the same geometrical and material characteristics as in the implants. In either case, the matching metallic cone region of the test specimen selected shall be of the same material, tolerances, and finish as the final femoral stem prosthesis.4.4 In the fatigue test methods, it is recognized that actual loading in vivo is quite varied, and that no one set of experimental conditions can encompass all possible variations. Thus, the test methods included here represent a simplified model for the purposes of comparisons between designs and materials. These test methods are intended to be performed in physiological solution.4.5 The test data may yield valuable information about the relative strengths of different head and cone designs.1.1 These test methods cover the evaluation of the cyclic fatigue strength of ceramic modular femoral heads, mounted on a cone as used on the femoral stem of the total hip arthroplasty.1.2 These test methods were primarily developed for evaluation of ceramic (Specification F603, ISO 6474-1, ISO 6474-2, ISO 13356) head designs on metal cones but may have application to other materials.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Cyclic direct simple shear strength test results are used most often for evaluating the ability of a soil to resist shear stresses induced in a soil mass during earthquake loading, offshore storm loading, etc.5.2 In this test, the cyclic strength is measured under constant volume conditions that are equivalent to undrained conditions; hence, the test is applicable to field conditions in which the soils have consolidated under one set of stresses, and then are subjected to changes in stress/strain without time for further drainage to take place.5.3 The cyclic strength is a function of many factors including density, confining pressure, stress history, grain structure, specimen preparation procedure, frequency, and characteristics of the cyclic loading applied. Therefore, test factors shall be considered during evaluation of test results.5.4 The state of stress within the direct simple shear specimen is not sufficiently defined nor uniform enough to allow rigorous interpretation of the results. Expressing the data in terms of the shear stress and vertical effective stress on the horizontal plane is useful for engineering purposes. Some effective stress parameters that could be derived from a cyclic direct simple shear test shall not be confused with corresponding parameters derived from other shear tests having better defined states of stress (that is, cyclic triaxial tests).5.5 The values of settlement in saturated soil after cyclic loading can be assessed from the test results by allowing volume change at the end of the shearing to achieve same vertical effective stresses as at end of primary consolidation.5.6 The data from the consolidation portion of this test are comparable to results obtained using Test Method D2435/D2435M provided that the more rigorous consolidation procedure of Test Method D2435/D2435M is followed.1.1 This test method defines equipment specifications and testing procedures for the measurement of cyclic strength, number of cycles to liquefaction or cyclic properties (Modulus and Damping) of soils, after one-dimensional consolidation using a cyclic mode of loading.1.2 The cyclic shearing can be applied using load control or displacement control. It shall be the responsibility of the agency requesting this test to specify the magnitude and frequency of the cyclic loading. Other loading histories may be used if required by the agency requesting the testing.1.3 This test method is written specifically for devices that test cylindrical specimens enclosed in a wire-reinforced membrane or a soft membrane within a stack of rigid rings (this test method applies to Teflon coated rigid rings as well). Other types of shear devices are beyond the scope of this test method.1.4 This test method can be used for testing cohesionless free draining soils or fine grained soils. However, this test method may be followed when testing most soil types if care is taken to ensure that any special considerations required for such soils are accounted for.1.5 The shearing phase of this test is conducted under constant volume conditions. Since the lateral confinement system prevents radial specimen strains, the constant volume condition is accomplished by preventing specimen height change during shear. Shearing under constant volume can be performed on dry or saturated specimens. The constant volume condition is equivalent to the undrained condition for fully saturated specimens. Cyclic direct simple shear testing with truly undrained conditions (restricting pore water flow from and into the specimen) can be performed using some simple shear devices, but is beyond the scope of this standard.21.6 The cyclic strength of a soil is determined based on the number of cycles required to reach a limiting double amplitude shear strain or a single amplitude shear strain, while liquefaction is more commonly defined as 100 % change in vertical stress ratio (change in effective vertical stress during shearing divided by effective vertical stress at end of primary consolidation). The change in vertical stress ratio in constant volume shearing is equivalent to the excess pore pressure ratio (excess pore pressure during shearing divided by effective vertical stress at end of primary consolidation) under undrained conditions. The strain criterion is only applicable when performing load controlled tests; 100 % change in vertical stress ratio can be used for both, load and displacement control. For displacement control testing, the criterion to stop the test could be a specified number of cycles.1.7 This test method is applicable to testing intact, reconstituted, or compacted specimens; however, it does not include specific guidance for preparing, reconstituting or compacting test specimens.1.8 It shall be the responsibility of the agency requesting this test to specify the magnitude of the consolidation stress prior to shear and, if assigned, an unloading consolidation stage may be required for over-consolidating the specimen.1.9 All recorded and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026.1.9.1 The procedures used to specify how data are collected/recorded and calculated in this test method are regarded as the industry standard. In addition, they are representative of the significant digits that shall generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this test method to consider significant digits used in analysis methods for engineering design.1.9.2 Measurements made to more significant digits or better sensitivity than specified in this standard shall not be regarded as nonconformance with this standard.1.10 Units—The values stated in SI units are to be regarded as the standard. Reporting test results in units other than SI shall be regarded as conformance with this test method. In the engineering profession it is customary practice to use, interchangeably, units representing both mass and force, unless dynamic calculations (F=Ma) are involved. This implicitly combines two separate systems of units, that is, the absolute system and the gravimetric system. It is scientifically undesirable to combine two separate systems within a single standard. This test method has been written using SI units; however, inch-pound conversions are given in the gravimetric system, where the pound (lbf) represents a unit of force (weight). The use of balances or scales recording pounds of mass (lbm), or the recording of density in lb/ft3 shall not be regarded as nonconformance with this test method.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Nitroxide radicals (H-Tempo, O-Tempo (4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl), etc.) are widely used as inhibitors of thermopolymerization in the processes of transportation, storage, and separation of monomers (isoprene, butadiene, styrene, etc.). This test method provides a procedure for assaying nitroxide radicals in monomers.4.2 This procedure can be used for determination of the content of nitroxide radicals (H-Tempo, O-Tempo, etc.) in other solvents (dimethyl formamide, DMSO etc.).1.1 This test method is designed to determine the content of nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (H-Tempo) in butadiene, isoprene, and styrene.1.2 This test method is applicable to samples with nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (H-Tempo) with concentrations to 100 mg⁄kg. The limit of detection (LOD) is 0.47 mg/kg for nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (H-Tempo) and the limit of quantitation (LOQ) is 1.6 mg/kg nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (H-Tempo).1.3 The following applies for the purposes of determining the conformance of the test results using this test method to applicable specifications, results shall be rounded of in accordance with the rounding-off method of Practice E29.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Structural design of exterior windows, curtain walls, doors, and impact protective systems is typically based on positive and negative design pressure(s). Design pressures based on wind speeds with a mean recurrence interval (usually 25 to 100 years) that relates to desired levels of structural reliability and are appropriate for the type and importance of the building (1).6 The adequacy of the structural design is substantiated by other test methods such as Test Methods E330/E330M and E1233/E1233M which discuss proof loads as added factors of safety. However, these test methods do not account for other factors such as impact from windborne debris followed by fluctuating pressures associated with a severe windstorm environment. As demonstrated by windstorm damage investigations, windborne debris is present in hurricanes and has caused a significant amount of damage to building envelopes (2-7). The actual in-service performance of fenestration assemblies and impact protective systems in areas prone to severe windstorms is dependent on many factors. Windstorm damage investigations have shown that the effects of windborne debris, followed by the effects of repeated or cyclic wind loading, were a major factor in building damage (2-7).5.1.1 Many factors affect the actual loading on building surfaces during a severe windstorm, including varying wind direction, duration of the wind event, height above ground, building shape, terrain, surrounding structures, and other factors (1). The resistance of fenestration or impact protective systems assemblies to wind loading after impact depends upon product design, installation, load magnitude, duration, and repetition.5.1.2 Windows, doors, and curtain walls are building envelope components often subject to damage in windstorms. The damage caused by windborne debris during windstorms goes beyond failure of building envelope components such as windows, doors, and curtain walls. Breaching of the envelope exposes a building's contents to the damaging effects of continued wind and rain (1, 4-7). A potentially more serious result is internal pressurization. When the windward wall of a building is breached, the internal pressure in the building increases, resulting in increased outward acting pressure on the other walls and the roof. The internal pressure coefficient (see ASCE/SEI 7), which is one of several design parameters, can increase by a factor as high as four. This can increase the net outward acting pressure by a factor as high as two.5.1.3 The commentary to ANSI/ASCE 7-93 discusses internal pressure coefficients and the increased value to be used in designing envelopes with “openings” as follows:“Openings” in Table 9 (Internal Pressure Coefficients for Buildings) means permanent or other openings that are likely to be breached during high winds. For example, if window glass is likely to be broken by missiles during a windstorm, this is considered to be an opening. However, if doors and windows and their supports are designed to resist specified loads and the glass is protected by a screen or barrier, they need not be considered openings. (109)Thus, there are two options in designing buildings for windstorms with windborne debris: buildings designed with “openings” (partially enclosed buildings) to withstand the higher pressures noted in the commentary to ANSI/ASCE 7-93 and, alternatively, building envelope components designed so they are not likely to be breached in a windstorm when impacted by windborne debris. The latter approach reduces the likelihood of exposing the building contents to the weather.5.2 In this test method, a test specimen is first subjected to specified missile impact(s) followed by the application of a specified number of cycles of positive and negative static pressure differential (8). The assembly must satisfy the pass/fail criteria established by the specifying authority, which may allow damage such as deformation, deflection, or glass breakage.5.3 The windborne debris generated during a severe windstorm varies greatly, depending upon windspeed, height above the ground, terrain, surrounding structures, and other sources of debris (4). Typical debris in hurricanes consists of missiles including, but not limited to, roof gravel, roof tiles, signage, portions of damaged structures, framing lumber, roofing materials, and sheet metal (4, 7, 9). Median impact velocities for missiles affecting residential structures considered in Ref (7) ranged from 9 m/s (30 fps) to 30 m/s (100 fps). The missiles and their associated velocity ranges used in this test method are selected to reasonably represent typical debris produced by windstorms.5.4 To determine design wind loads, averaged wind speeds are translated into air pressure differences. Superimposed on the averaged winds are gusts whose aggregation, for short periods of time (ranging from fractions of seconds to a few seconds) may move at considerably higher speeds than the averaged winds. Wind pressures related to building design, wind intensity versus duration, frequency of occurrence, and other factors are considered.5.4.1 Wind speeds are typically selected for particular geographic locations and probabilities of occurrence from wind speed maps such as those prepared by the National Weather Service, from appropriate wind load documents such as ASCE/SEI 7 or from building codes enforced in a particular geographic region.5.4.2 Equivalent static pressure differences are calculated using the selected wind speeds (1).5.5 Cyclic pressure effects on fenestration assemblies after impact by windborne debris are significant (6-8, 10-12). It is appropriate to test the strength of the assembly for a time duration representative of sustained winds and gusts in a windstorm. Gust wind loads are of relatively short duration. Other test methods, such as Test Methods E330/E330M and E1233/E1233M, do not model gust loadings. They are not to be specified for the purpose of testing the adequacy of the assembly to remain unbreached in a windstorm environment following impact by windborne debris.5.6 Further information on the subjects covered in Section 5 is available in Refs (1-12).1.1 This test method covers the performance of exterior windows, curtain walls, doors, and impact protective systems impacted by missile(s) and subsequently subjected to cyclic static pressure differentials. A missile propulsion device, an air pressure system, and a test chamber are used to model some conditions which may be representative of windborne debris and pressures in a windstorm environment. This test method is applicable to the design of entire fenestration or impact protection systems assemblies and their installation. The performance determined by this test method relates to the ability of elements of the building envelope to remain unbreached during a windstorm.NOTE 1: Exception: Exterior garage doors and rolling doors are governed by ANSI/DASMA 115 and are beyond the scope of this test method.1.2 The specifying authority shall define the representative conditions (see 10.1).1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. Certain values contained in reference documents cited herein may be stated in inch-pound units and must be converted by the user.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is a standard procedure for determining structural performance under cyclic air pressure differential. This typically is intended to represent the long-term effects of repeated applications of wind load on exterior building surface elements or those loads that may be experienced during a hurricane or other extreme wind event. This test method is intended to be used for installations of window, curtain wall, and door assemblies for which the effects of cyclic or repeated loads may be significant factors in the in-service structural performance of the system and for which such effects cannot be determined by testing under a single application of uniform static air pressure. This test method is not intended to account for the effect of windborne debris. This test method is considered appropriate for testing unique constructions or for testing systems that have insufficient in-service records to establish their performance under cyclic loading.5.1.1 The actual loading on building surfaces is quite complex, varying with wind direction, time, height above ground, building shape, terrain, surrounding structures, and other factors. The resistance of many window, curtain wall, and door assemblies to wind loading is also complex and depends on the complete history of load magnitude, duration, and repetition. These factors are discussed in ASCE/SEI 7 and in the literature (1-12).55.2 This test method is not intended for use in evaluating the adequacy of glass for a particular application. When the structural performance of glass is to be evaluated, the procedure described in Standard Test Method E997 or E998 shall be used.5.3 The proper use of this test method requires knowledge of the principles of pressure and deflection measurement.5.4 Two types of cyclic air pressure differentials are defined: (Procedure A) Life cycle load (X1.1) and (Procedure B) Wind event load (X1.2). When testing under uniform static air pressure to establish structural performance, including performance under proof load, Standard Test Method E330/E330M applies. Consideration of windborne debris in combination with cyclic air pressure differential representing extreme wind events is addressed in Standard Test Method E1886 and Standard Specification E1996.5.5 Typical practice in the United States for the design and testing of exterior windows, curtain walls, and doors has been to consider only a one-time application of design wind load, increased by an appropriate factor of safety. This design wind load is based on wind velocities with actual average probabilities of occurrence of once in the design life of the structure. The actual in-field performance of such assemblies, however, is dependent on many complex factors, and there exists significant classes of applications where the effects of repeated or cyclic wind loading will be the dominating factor in the actual structural performance, even though the magnitudes of such cyclic loads may be substantially lower than the peak load to which the assembly will be subjected during its design life. Examples of assemblies for which the effects of cyclic loading may be significant are included in Appendix X2.5.5.1 When cyclic load effects are significant, the actual in-field performance of the assembly will depend on the complete load history to which the assembly is subjected. The history includes variable sustained loads as well as gusts, which occur at varying frequencies and durations. Such load histories are not deterministic, requiring the specifier to resort to a probabilistic approach for test parameters. The resistance of an assembly to cyclic loading is similarly complex. When available, endurance curves (stress/number (S/N) curves) can be used to estimate the fatigue resistance of a particular material. A major uncertainty in applying these data, however, is that the stress in an element induced by a unit pressure load is usually not known a priori. The problem is further complicated by the fact that the load to which the in situ assembly is subjected is not a repetitive load of given magnitude but one that varies in frequency, duration, and magnitude such as loads associated with a wind event.5.5.2 To establish practical test parameters, the considerations in 5.1 – 5.5.1 must be modeled by a simple loading program that approximates the actual loading with respect to its damage potential. For the case of life cycle loads, the anticipated actual loading may include critical pressures that will occur with greater frequency during the design life of the structure than is practical to use for testing. In such cases, the actual load magnitude and number of repetitions must be represented in the test by an equivalent load of larger magnitude and fewer repetitions. For the case of specific wind event loads, the entire test loading program may be developed from wind tunnel testing or by using methods defined in the literature.5.5.3 In this test method, the test assembly is first subjected to pressure cycles. The assembly is expected to survive this loading without apparent structural distress. Following this, the assembly is subjected to positive and negative maximum test loads. The maximum test loads may represent sustained loads or gust loads, or both.5.6 Design wind velocities may be selected for particular geographic locations and probabilities of occurrence based on data from wind velocity maps such as provided in ASCE/SEI 7.5.7 The person specifying the test must translate the anticipated wind velocities and durations into static air pressure differences and durations. Complexities of wind pressures as related to building design, wind intensity versus duration, frequency of occurrence, and other factors must be considered. Superimposed on sustained winds are gusting winds which, for short periods of time, from fractions of seconds to a few seconds, may move at considerably higher velocities than the sustained winds. Wind tunnel studies, computer simulations, and model analyses are helpful in determining the appropriate wind pressures for buildings by showing how a particular building acts under wind velocities established by others. (1-6).55.8 Specification of a test program based on a comprehensive treatment of all of the above considerations is a complex task. The procedures presented in Appendix X1 may be used to establish test parameters when a comprehensive analysis of the problem is not possible. The procedures account for the expected magnitude variation and occurrence frequency in wind velocities; they are not intended to account for turbulent wind load or structural resonance effects (2).5.9 Some materials have strength or deflection characteristics that are time dependent. Therefore, the duration of the applied test load may have a significant impact on the performance of materials used in the test specimen. The most common examples of materials with time-dependent response characteristics that are used in curtain walls are glass, plastics, and composites that employ plastics. For this reason, the strength of an assembly is tested for the actual time duration to which it would be exposed to a sustained or a gust load, or both, as discussed below. For practical purposes, cyclic load effects are to be considered to be duration-dependent, and the cyclic test loads need be applied only long enough for the chamber pressure to stabilize. In the past, practice in the United States generally has been to require a minimum test period for maximum test loads of 10 s for specified loads equal to 1.5 times the design pressure, unless otherwise specified. Thus a safety factor was incorporated in the testing. If the design wind load is determined through the analytical procedures of ASCE/SEI 7, the test load shall be based on the nominal loads derived from the load combinations used in allowable stress design. With higher test loads and longer time durations, the designer must also consider what safety factors are essential, particularly with regard to gust wind loads. Gust wind loads are of relatively short duration, so that care shall be exercised not to specify or allow unnecessarily long duration loads for purposes of testing the adequacy of the structure to withstand wind gusts.NOTE 1: In applying the results of tests by this test method, note that the performance of a wall or its components, or both, may be a function of fabrication, installation, and adjustment. The specimen may or may not truly represent every aspect of the actual structure. In service, the performance will also depend on the rigidity of the supporting construction and on the resistance of components to deterioration by various other causes, including vibration, thermal expansion, contraction, etc.1.1 This test method describes the determination of the structural performance of exterior windows, doors, skylights, and curtain walls under cyclic air pressure differential, using a test chamber. This test method is applicable to all curtain wall assemblies, including, but not limited to, metal, glass, masonry, and stone components.21.2 This test method is intended only for evaluating the structural performance associated with the specified test specimen, and not the structural performance of adjacent construction.1.3 Procedure A shall be used for life cycle test loads.1.4 Procedure B shall be used for wind event test loads.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.1.7 The text of this test method references notes and footnotes that provide explanatory materials. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The failure of a building sealant in an active joint is usually manifested by cohesive failure in the sealant or adhesive failure between the sealant and the substrate, or both. The method described in this test method relates only to the performance of the sealant when properly installed with recommended primers, and does not evaluate sealant failures caused by improper joint design, excessive joint movement, improper application practices, and other factors known to cause sealant failure in buildings and building areas.1.1 This test method is an accelerated laboratory procedure for evaluating the performance of a building sealant in a test configuration that is subjected to water immersion, cyclic movement, and temperature change.31.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Cyclic triaxial strength test results are used for evaluating the ability of a soil to resist the shear stresses induced in a soil mass due to earthquake or other cyclic loading.5.1.1 Cyclic triaxial strength tests may be performed at different values of effective confining pressure on isotropically consolidated specimens to provide data required for estimating the cyclic stability of a soil.5.1.2 Cyclic triaxial strength tests may be performed at a single effective confining pressure, usually equal to 100 kN/m2 [14.5 lb/in.2], or alternate pressures as appropriate on isotropically consolidated specimens to compare cyclic strength results for a particular soil type with that of other soils, Ref (2).5.2 The cyclic triaxial test is a commonly used technique for determining cyclic soil strength.5.3 Cyclic strength depends upon many factors, including density, confining pressure, applied cyclic shear stress, stress history, grain structure, age of soil deposit, specimen preparation procedure, and the frequency, uniformity, and shape of the cyclic wave form. Thus, close attention must be given to testing details and equipment.5.4 There are certain limitations inherent in using cyclic triaxial tests to simulate the stress and strain conditions of a soil element in the field during an earthquake.5.4.1 Nonuniform stress conditions within the test specimen are imposed by the specimen end platens. This can cause a redistribution of void ratio within the specimen during the test.5.4.2 A 90° change in the direction of the major principal stress occurs during the two halves of the loading cycle on isotropically consolidated specimens.5.4.3 The maximum cyclic shear stress that can be applied to the specimen is controlled by the stress conditions at the end of consolidation and the pore-water pressures generated during testing. For an isotropically consolidated contractive (volume decreasing) specimen tested in cyclic compression, the maximum cyclic shear stress that can be applied to the specimen is equal to one-half of the initial total axial pressure. Since cohesionless soils are not capable of taking tension, cyclic shear stresses greater than this value tend to lift the top platen from the soil specimen. Also, as the pore-water pressure increases during tests performed on isotropically consolidated specimens, the effective confining pressure is reduced, contributing to the tendency of the specimen to neck during the extension portion of the load cycle, invalidating test results beyond that point.5.4.4 While it is advised that the best possible intact specimens be obtained for cyclic strength testing, it is sometimes necessary to reconstitute soil specimens. It has been shown that different methods of reconstituting specimens to the same density may result in significantly different cyclic strengths. Also, intact specimens will almost always be stronger than reconstituted specimens.5.4.5 The interaction between the specimen, membrane, and confining fluid has an influence on cyclic behavior. Membrane compliance effects cannot be readily accounted for in the test procedure or in interpretation of test results. Changes in porewater pressure can cause changes in membrane penetration in specimens of cohesionless soils. These changes can significantly influence the test results.5.4.6 The mean total confining pressure is asymmetric during the compression and extension stress application when the chamber pressure is constant. This is totally different from the symmetric stress in the simple shear case of the level ground liquefaction.Note 1—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the cyclic strength (sometimes called the liquefaction potential) of saturated soils in either intact or reconstituted states by the load-controlled cyclic triaxial technique.1.2 The cyclic strength of a soil is evaluated relative to a number of factors, including: the development of axial strain, magnitude of applied cyclic stress, number of cycles of stress application, development of excess pore-water pressure, and state of effective stress. A comprehensive review of factors affecting cyclic triaxial test results is contained in the literature (1).21.3 Cyclic triaxial strength tests are conducted under undrained conditions to simulate essentially undrained field conditions during earthquake or other cyclic loading.1.4 Cyclic triaxial strength tests are destructive. Failure may be defined on the basis of the number of stress cycles required to reach a limiting strain or 100 % pore pressure ratio. See Section 3 for Terminology.1.5 This test method is generally applicable for testing cohesionless free draining soils of relatively high permeability. When testing well-graded materials, silts, or clays, pore-water pressures monitored at the specimen ends may not represent pore-water pressure values throughout the specimen. However, this test method may be followed when testing most soil types if care is taken to ensure that problem soils receive special consideration when tested and when test results are evaluated.1.6 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026. The procedures in Practice D6026 that are used to specify how data are collected, recorded, and calculated are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the objectives of the user. Increasing or reducing the significant digits of reported data to be commensurate with these considerations is common practice. Consideration of the significant digits to be used in analysis methods for engineering design is beyond the scope of this standard.1.6.1 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.7 The values stated in either SI units or inch-pound units [presented in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method provides data on classifying polymer-modified bituminous membranes by their performance related to the fatigue conditions to which they are subjected.5.2 This test method is applicable to testing specimens consisting of a single ply of the polymer-modified bitumen material or a multiple-ply composite that includes the polymer-modified bitumen material.5.3 This test method is conducted on both unaged and heat-aged specimens to determine the effect of heat exposure on the membrane material's ability to resist deterioration from cyclic strain. This test method may also be conducted on specimens subjected to other laboratory exposure conditions that are not specified herein.1.1 This test method determines the effect of constant cyclic displacement on polymer-modified bituminous membrane specimens. In this test method, a relatively low travel rate of cycling is used and the material is tested for a specified number of cycles under conditions of increased amplitude or lower temperature.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is a standard procedure for determining the resistance to water penetration under cyclic static air pressure differences. The air-pressure differences acting across a building envelope vary greatly. These factors should be fully considered prior to specifying the test pressure difference to be used.NOTE 1: In applying the results of tests by this test method, note that the performance of a wall or its components, or both, may be a function of proper installation and adjustment. In service, the performance will also depend on the rigidity of supporting construction and on the resistance of components to deterioration by various causes, vibration, thermal expansion and contraction, etc. It is difficult to simulate the identical complex wetting conditions that can be encountered in service, with large wind-blown water drops, increasing water drop impact pressures with increasing wind velocity, and lateral or upward moving air and water. Some designs are more sensitive than others to this upward moving water.NOTE 2: This test method does not identify unobservable liquid water which may penetrate into the test specimen.1.1 This test method covers the determination of the resistance of exterior windows, curtain walls, skylights, and doors to water penetration when water is applied to the outdoor face and exposed edges simultaneously with a cyclic static air pressure at the outdoor face higher than the pressure at the indoor face.1.2 This test method is applicable to any curtain-wall area or to windows, skylights, or doors alone.1.3 This test method addresses water penetration through a manufactured assembly. Water that penetrates the assembly, but does not result in a failure as defined herein, may have adverse effects on the performance of contained materials such as sealants and insulating or laminated glass. This test method does not address these issues.1.4 The proper use of this test method requires a knowledge of the principles of pressure measurement.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 7.1.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to evaluate automotive manual transmission fluids for thermal instability, which results in deterioration of synchronizer performance.5.2 This test method may also be utilized in other specifications and classifications of transmission and gear lubricants such as the following:5.2.1 (final API designation of PG-1),5.2.2 Military Specification MIL-L-2105,5.2.3 SAE Information Report J308 Axle and Manual Transmission Lubricants, and5.2.4 Mack Truck GO-H Gear Lubricant Specification.1.1 This test method covers the thermal stability of fluids for use in heavy duty manual transmissions when operated at high temperatures.1.2 The lubricant performance is measured by the number of shifting cycles that can be performed without failure of synchronization when the transmission is operated while continuously cycling between high and low range.1.3 Correlation of test results with truck transmission service has not been established. However, the procedure has been shown to appropriately separate two transmission lubricants, which have shown satisfactory and unsatisfactory field performance in the trucks of one manufacturer.1.4 Changes in this test method may be necessary due to refinements in the procedure, obsolescence of parts, or reagents, and so forth. These changes will be incorporated by Information Letters issued by the ASTM Test Monitoring Center (TMC). The test method will be revised to show the content of all the letters, as issued.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5.1 Exception—When materials, products, or equipment are available only in inch-pound units, SI units are omitted.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This test method is arranged as follows:  Section  1Referenced Documents  2Terminology  3Summary of Test Method  4  5Apparatus  6 Test Transmission  6.2 Transmission Mounts  6.3 Oil-Circulating System  6.4 Oil Return Hole  6.5 Air Pressure Controls  6.6 Drive System  6.7 Instrumentation  6.8 Thermocouple Placement  6.9Reagents and Materials  7Safety  8Preparation of Apparatus  9 Cleaning of Parts  9.1 Assembly  9.2Calibration  10 Transmission and Test Stand Calibration  10.1 Reference Oils  10.2 Reference Oil Test Frequency  10.3 Instrumentation Calibration  10.4 Shift Time Calibration  10.5Operating Procedure  11 System Flush and Charge  11.1 Test Operation  11.2 Shut-Down Procedure  11.3 Transmission Disassembly  11.4Determination of Test Results  12 Failure Criteria  12.1 Shifter Fork Wear  12.2 Test Validity Determination  12.3Report  13Precision and Bias  14Keywords  15Test Validity Calculations and Limits Annex A5HTCT Test Report Forms and Data Dictionary Annex A6Manual Transmission Cyclic Durability Test Parts Inspection and Wear Measurements Annex A71.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice can be used to describe the effects of materials, manufacturing, and design variables on the fatigue performance of metallic tibial trays subject to cyclic loading for relatively large numbers of cycles.4.2 The loading of tibial tray designs in vivo will, in general, differ from the loading defined in this practice. The results obtained here cannot be used to directly predict in-vivo performance. However, this practice is designed to allow for comparisons between the fatigue performance of different metallic tibial tray designs, when tested under similar conditions.4.3 In order for fatigue data on tibial trays to be comparable, reproducible, and capable of being correlated among laboratories, it is essential that uniform procedures be established.1.1 This practice covers a procedure for the fatigue testing of metallic tibial trays used in knee joint replacements using a cyclic, constant-amplitude force. It applies to tibial trays that cover both the medial and lateral plateaus of the tibia. This practice may require modifications to accommodate other tibial tray designs.1.2 This practice is intended to provide useful, consistent, and reproducible information about the fatigue performance of metallic tibial trays with one unsupported condyle. The results are applicable to the laboratory test conditions and may not correlate with in vivo performance.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 These cyclic test methods are intended to measure the performance of vertical elements of the lateral force resisting system subjected to earthquake loads. Since these loads are cyclic, the loading process simulates the actions and their effects on the specimens.5.2 The monotonic test is intended to provide data from a continuous displacement ramp loading of a matched test specimen with boundary conditions identical to the specimens that will be cyclically tested. The results from the monotonic test, when employed, are primarily intended for defining the amplitudes of load cycles for the three cyclic protocols.NOTE 2: The monotonic test is not intended to serve as an equivalent alternative to the cyclic protocols of this Test Method or the procedures of Test Methods E72 or Practice E564.1.1 These test methods cover the evaluation of the shear stiffness, shear strength, and ductility of the vertical elements of lateral force resisting systems, including applicable shear connections and hold-down connections, under quasi-static cyclic (reversed) load conditions.1.2 These test methods are intended for specimens constructed from wood or metal framing braced with solid sheathing or other methods or structural insulated panels.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the benzene content of specific cyclic hydrocarbon products.1.2 Benzene may be determined over a range from 5 to 300 mg/kg.1.3 The products in which benzene can be determined include cyclohexane, toluene, individual C8 aromatics, cumene, and styrene.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

When a laboratory-accelerated test simulates the changing conditions to which automotive finishes are exposed, more realistic corrosion failures are produced.Cyclic corrosion tests are effective for evaluating a variety of corrosion mechanisms, such as general, galvanic, crevice, etc. The cyclic corrosion tests make use of many types of environments, such as salt fog (Practice B 117), humidity (Practice D 2247 or Practice D 1735) and dry conditions to accelerate metallic corrosion. In cyclic corrosion testing, specimens can be exposed to many different types of environmental conditions and cycled from one environment to another.In all tests it is imperative to expose control specimens with an established corrosion performance together with the test specimens to make a comparison possible of the corrosion performance of the two sets.Guidelines are included for those who evaluate the corrosion performance of painted metal parts in cyclic corrosion tests. These guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study, without being affected by the test procedure itself. The guidelines are also intended to assist users of this type of test in obtaining good inter-laboratory agreement of results.This guide is not intended to be a substitute for the described cyclic corrosion test standard. In all cases, the laboratory should obtain the most recent published standard for complete details. The published standard supersedes this guide.1.1 This guide is designed to assist in determining the appropriate corrosion test methods for automotive painted steel.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
38 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页