微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E1169-21 Standard Practice for Conducting Ruggedness Tests Active 发布日期 :  1970-01-01 实施日期 : 

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers the physical dimensions and characteristics of a laboratory burner used for small-scale burning tests on plastic materials, with the supply gases including methane, propane, and butane. The burner shall consist of a burner barrel that threads onto a one-piece base, which is equipped with an orifice and a needle valve that restricts the orifice opening and regulates the gas velocity through the burner, and a gas inlet, which consists of a serrated fitting for connection to the gas supply. A lock nut for securing the barrel onto the base may be provided optionally. The mixing tube of the barrel shall be manufactured with a uniform bore, and the barrel, threads, and serrated fitting shall be free of flash and burrs.1.1 This specification covers the physical dimensions and characteristics of a laboratory burner to be used as an ignition source for small-scale burning tests on plastic materials. The burner is used with methane, propane, or butane supply gases for flame heights of 20 to 125 mm.1.2 This fire standard cannot be used to provide quantitative measures.1.3 The burner described in this specification is suitable for use in the following ASTM standards: Specification C509, Test Method D229, Test Method D635, Test Method D876, Test Method D3014, Test Method D3801, Test Method D4804, Test Method D4986, and Test Method D5048. Safety hazards and known limitations on applicability of fire-test-response standards are addressed in the individual test methods.NOTE 1: This specification is equivalent to the ignition source specified in IEC 60695-11-3, Annex A and IEC 60695-11-4, Annex A.NOTE 2: This specification is equivalent to the P/PF2 ignition source specified in ISO 10093.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

6.1 Contaminated sediments may affect natural populations of aquatic organisms adversely. Sediment-dwelling organisms may be exposed directly to contaminants by the ingestion of sediments and by the uptake of sediment-associated contaminants from interstitial and overlying water. Contaminated sediments may affect water column species directly by serving as a source of contaminants to overlying waters or a sink for contaminants from overlying waters. Organisms may also be affected when contaminated sediments are suspended in the water column by natural or human activities. Water column species and nonaquatic species may also be affected indirectly by contaminated sediments by the transfer of contaminants through ecosystems (7, 8).6.2 The procedures described in this guide may be used and adapted for incorporation in basic and applied research to determine the ecological effects of contaminated sediments. These same methods may also be used in the development and implementation of monitoring and regulatory programs designed to prevent and manage sediment contamination.6.3 Sediment tests with aquatic organisms can be used to quantify the acute and chronic toxicity and the bioavailability of new and presently used materials. Sediment toxicity may also result from environmental processes such as ammonia generation, pH shifts, or dissolved oxygen fluctuation. In many cases, consideration of the adverse effects of sediment-associated contaminants is only one part of a complete hazard assessment of manufactured compounds that are applied directly to the environment (for example, pesticides) and those released (for example, through wastewater effluents) as by-products from the manufacturing process or from municipalities (7).6.4 Sediment tests can be used to develop exposure-response relationships for individual toxicants by spiking clean sediments with varying concentrations of a test chemical and determining the concentration that elicits the target response in the test organism (Guide E1391). Sediment tests can also be designed to determine the effects that the physical and chemical properties of sediments have on the bioavailability and toxicity of compounds.6.5 Sediment tests can provide valuable information for making decisions regarding the management of contaminated sediments from hazardous waste sites and other contaminated areas. Biological tests with sediments can also be used to make defensible management decisions on the dredging and disposal of potentially contaminated sediments from rivers and harbors. ((7, 8), Test Method E1706.)1.1 As the contamination of freshwater and saltwater ecosystems continues to be reduced through the implementation of regulations governing both point and non-point source discharges, there is a growing emphasis and concern regarding historical inputs and their influence on water and sediment quality. Many locations in urban areas exhibit significant sediment contamination, which poses a continual and long-term threat to the functional condition of benthic communities and other species inhabiting these areas (1).2 Benthic communities are an important component of many ecosystems and alterations of these communities may affect water-column and nonaquatic species.1.2 Biological tests with sediments are an efficient means for evaluating sediment contamination because they provide information complementary to chemical characterizations and ecological surveys (2). Acute sediment toxicity tests can be used as screening tools in the early phase of an assessment hierarchy that ultimately could include chemical measurements or bioaccumulation and chronic toxicity tests. Sediment tests have been applied in both saltwater and freshwater environments (2-6). Sediment tests have been used for dredge material permitting, site ranking for remediation, recovery studies following management actions, and trend monitoring. A particularly important application is for establishing contaminant-specific effects and the processes controlling contaminant bioavailability(7).1.3 This guide is arranged as follows:  SectionReferenced Documents  2Terminology  3Application  4Summary of Guide  5  6Hazards  7Sediment Test Types  8Biological Responses  9Test Organisms 10Experimental Design Considerations 11Data Interpretation 12Keywords 131.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Granular activated carbon (GAC) is commonly used to remove contaminants from water. However if not used properly, GAC can not only be expensive but can at times be ineffective. The development of engineering data for the design of full-scale adsorbers often requires time-consuming and expensive pilot plant studies. This rapid standard practice has been developed to predict adsorption in large-scale adsorbers based upon results from small column testing. In contrast to pilot plant studies, the small-scale column test presented in this practice does not allow for a running evaluation of factors that may affect GAC performance over time. Such factors may include, for example, an increased removal of target compounds by bacterial colonizing GAC3 or long-term fouling of GAC caused by inorganic compounds or background organic matter.4 Nevertheless, this practice offers more relevant operational data than isotherm testing without the principal drawbacks of pilot plant studies, namely time and expense; and unlike pilot plant studies, small-scale studies can be performed in a laboratory using water sampled from a remote location.5.2 This practice known as the rapid small-scale column test (RSSCT) uses empty bed contact time (EBCT) and hydraulic loading to describe the adsorption process. Mean carbon particle diameter is used to scale RSSCT results to predict the performance of a full-scale adsorber.5.3 This practice can be used to compare the effectiveness of different activated carbons for the removal of contaminants from a common water stream.1.1 This practice covers a test method for the evaluation of granular activated carbon (GAC) for the adsorption of soluble pollutants from water. This practice can be used to estimate the operating capacities of virgin and reactivated granular activated carbons. The results obtained from the small-scale column testing can be used to predict the adsorption of target compounds on GAC in a large column or full-scale adsorber application.1.2 This practice can be applied to all types of water including synthetically contaminated water (prepared by spiking high-purity water with selected contaminants), potable waters, industrial wastewaters, sanitary wastes, and effluent waters.1.3 This practice is useful for the determination of breakthrough curves for specific contaminants in water, the determination of the lengths of the adsorbates mass transfer zones (MTZ), and the prediction of GAC usage rates for larger scale adsorbers.1.4 The following safety caveat applies to the procedure section, Section 10, of this practice: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This practice covers internationally accepted methods for the conducting static pressure system tests for “small” aircraft.1.2 The applicant for a design approval must seek the individual guidance of their respective CAA body concerning the use of this practice as part of a certification plan. For information on which CAA regulatory bodies have accepted this practice (in whole or in part) as a means of compliance to their Small Aircraft Airworthiness regulations (hereinafter referred to as “the Rules”), refer to ASTM F44 webpage (www.ASTM.org/COMMITTEE/F44.htm) which includes CAA website links.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Fiber cohesion is related to the resistance to drafting encountered during textile processing and is affected by such fiber properties as surface lubrication, linear density, surface configuration, fiber length, and crimp.5.2 Fiber cohesion is affected by the alignment of fiber in sliver in addition to the factors listed in 5.1. A half turn of twist in a 140-mm specimen has been found to increase the breaking force by 30 % and a full turn by 60 %. For this reason, care must be exercised in precise mounting of specimens.5.3 For the same reason given in 5.2, card sliver gives a different breaking tenacity than draw sliver of the same fiber. Fibers are more aligned in draw sliver, resulting in lower cohesion.5.4 Increasing the gage length of test specimens reduces the breaking force and apparent cohesion.5.5 The mathematical relationship between the observed value for breaking tenacity and processability has not been established, but the observed values can be used in comparing various fiber characteristics on a relative basis.5.6 This method for measuring fiber cohesion in sliver or top (static tests) is not recommended for acceptance testing because it is an empirical method which must be followed explicitly. Results obtained under other conditions cannot be expected to be comparable.5.6.1 In some cases, the purchaser and the supplier may have to test a commercial shipment of one or more specific materials by the best available method, even though the method has not been recommended for acceptance testing of commercial shipments. In case of dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens, which are as homogeneous as possible and which are from a lot of material of the type in question. Test specimens then should be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using appropriate statistical analysis and a probability level chosen by the two parties prior to testing. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.1.1 This test method describes the measurement of fiber cohesion as the force required to cause initial drafting in a bundle of fibers in sliver and top. The observed cohesive force required to separate the fibers is converted to cohesive tenacity based on the linear density of the specimen.NOTE 1: For determination of fiber cohesion in dynamic tests, refer to Test Method D4120.1.2 The values stated in SI units are to be regarded as standard. Inch-pound units appear in parentheses for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The ability of a paint or coating to resist deterioration of its physical and optical properties caused by exposure to light, heat, and water can be very significant for many applications. This practice is intended to induce property changes associated with end-use conditions, including the effects of sunlight, moisture, and heat. The exposure used in this practice is not intended to simulate the deterioration caused by localized weather phenomena such as atmospheric pollution, biological attack, and saltwater exposure.4.2 Cautions—Variation in results may be expected when different operating conditions are used. Therefore, no reference to the use of this practice shall be made unless accompanied by a report prepared according to Section 10 that describes the specific operating conditions used. Refer to Practice G151 for detailed information on the caveats applicable to use of results obtained according to this practice.NOTE 2: Additional information on sources of variability and on strategies for addressing variability in the design, execution, and data analysis of laboratory accelerated exposure tests is found in Guide G141.4.2.1 The spectral power distribution of light from an enclosed carbon arc is significantly different from that produced in light and water exposure devices using other carbon-arc configurations or other light sources. The type and rate of degradation and the performance rankings produced by exposures to enclosed carbon arcs can be much different from those produced by exposures to other types of laboratory light sources.4.2.2 Interlaboratory comparisons are valid only when all laboratories use the same type of carbon arc, filters, and exposure conditions.4.3 Reproducibility of test results between laboratories has been shown to be good when the stability of materials is evaluated in terms of performance ranking compared to other materials or to a control.4,5 Therefore, exposure of a similar material of known performance (a control) at the same time as the test materials is strongly recommended. It is recommended that at least three replicates of each material be exposed to allow for statistical evaluation of results.4.4 Test results will depend upon the care that is taken to operate the equipment according to Practice G153. Significant factors include regulation of line voltage, freedom from salt or other deposits from water, temperature and humidity control, and conditions of the electrodes.4.5 All references to exposures in accordance with this practice must include a complete description of the test cycle used.1.1 This practice covers the selection of test conditions for accelerated exposure testing of coatings and related products in enclosed carbon arc devices operated according to Practices G151 and G153. This practice also covers the preparation of test specimens, the test conditions suited for coatings, and the evaluation of test results.1.2 This practice does not cover filtered open-flame carbon-arc exposures of paints and related coatings, which is described in Practice D822. Another procedure for exposing these products is covered by Practice D3361/D3361M, in which the specimens are subjected to radiation from an unfiltered open-flame carbon arc that produces shorter wavelengths and higher levels of short wavelength radiation than filtered open flame or enclosed carbon arcs.NOTE 1: Practice D3361/D3361M requires use of open-flame carbon-arc apparatus with automatic humidity control.1.3 The values in SI units are to be regarded as standard. The values given in parentheses are for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

3.1 This practice is an accelerated evaluation of bead retention, retroreflectivity, daytime color, night time color, and wear characteristics of fluid traffic marking materials. It is used to determine the useful life of such markings in the field. The same procedures are applicable to evaluating longitudinal lines to determine service life.1.1 This practice covers the determination of the relative service life of fluid traffic marking materials such as paint, thermoplastic, epoxy, and polyester products under actual road conditions using transverse test lines. Materials under test are applied under prescribed conditions and periodic observations are made using prescribed performance criteria.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
311 条记录,每页 15 条,当前第 11 / 21 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页