微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The data from this guide seldom, if ever, directly simulate thermal and pressure events in the processing, storage, and shipping of chemicals. However, the data obtained from this guide may be used, with suitable precautions, to predict the thermal and pressure hazards associated with processing, storage, and shipping of a chemical or mixture of chemicals after appropriate scaling of the data. This has been addressed in the literature (1-4) but is beyond the scope of this guide.5.2 This guide is suitable, under the proper conditions, for the investigation of the effects of catalyst, inhibitors, initiators, reaction atmospheres, materials of construction, or, if available, agitation (see 6.1.2).5.3 Interpretation of the time-temperature or time-pressure data may be possible for relatively simple systems through the use of suitable temperature-dependent kinetic theories such as the Arrhenius and Absolute Reaction Rate theories (5, 6).1.1 This guide covers suggested procedures for the operation of a calorimetric device designed to obtain temperature and pressure data as a function of time for systems undergoing a physicochemical change under nearly adiabatic conditions.1.2 This guide outlines the calculation of thermodynamic parameters from the time, temperature, and pressure data recorded by a calorimetric device.1.3 The assessment outlined in this guide may be used over a pressure range from full vacuum to the rated pressure of the reaction container and pressure transducer. The temperature range of the calorimeter typically varies from ambient to 500 °C, but also may be user specified (see 6.6).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety precautions are outlined in Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification addresses flexible protective jackets, made of a modified asphalt or butyl rubber sealing compound, for use over thermal insulation. The sealing compound is covered with an outer surface material. Typical applications are insulated ducts, pipe, and equipment. These materials shall be used only for outdoor or direct burial applications.1.2 The jacket materials covered by this specification have an allowed exposure temperature range, after installation, from –25°F to 284°F (–32°C to 140°C).1.3 This specification does not address installation methods of this jacketing material.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 Unless there is a proper match between the expansions of the glaze and the body, all glazed whitewares may contain residual stresses from the firing that bonded the glaze to the body. In addition, whitewares are increasingly subjected to thermal stresses in service. Hence, an important use criterion for a glazed whiteware is adequate resistance to repeated abrupt thermal changes. In most cases, the result of inadequate resistance to thermal shock is the appearance of a craze pattern in the glaze. This craze pattern is visible by inspection with oblique lighting and application of a suitable ink or dye.3.2 This test method is applicable to vitreous whitewares that have negligible crazing as a result of moisture expansion. For nonvitreous and semivitreous bodies, refer to Test Method C424.1.1 This test method covers the determination of the resistance to crazing of fired, glazed, ceramic whitewares when stresses residual after glost firing may cause a tendency to craze, such stresses being induced by factors other than moisture expansion.1.2 This test is not intended to induce moisture expansion, which fact should be kept in mind if the materials to be evaluated may exhibit moisture expansion.NOTE 1: Test Method C424 covers a method for determining resistance to crazing induced by moisture expansion. Its use is generally confined to testing nonvitreous and semivitreous ceramic whitewares because these products may be subject to such expansion. For whitewares with negligible moisture expansion (such as vitreous and impervious ware), the thermal shock method described herein is generally to be preferred.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see Warning in 6.3.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium and plutonium oxides can be used as a nuclear-reactor fuel in the form of pellets. In order to be suitable for use as a nuclear fuel the starting material must meet certain specifications, such as found in Specifications C757, C833, C753, C776, C1008, or as specified by the purchaser. The uranium concentration, plutonium concentration, or both, and the isotopic abundances are measured by mass spectrometry following this test method.5.2 The separated heavy element fractions placed on mass spectrometric filaments must be very pure. The quantity required depends upon the sensitivity of the instrument detection system. If an electron multiplier detector is to be used, only a few nanograms are required. If a Faraday cup is used, a few micrograms are needed. Chemical purity of the sample becomes more important as the sample size decreases, because ion emission of the sample is suppressed by impurities.1.1 This test method covers the determination of the concentration and isotopic composition of uranium and plutonium in solutions. The purified uranium or plutonium from samples ranging from nuclear materials to environmental or bioassay matrices is loaded onto a mass spectrometric filament. The isotopic ratio is determined by thermal ionization mass spectrometry, the concentration is determined by isotope dilution.1.2 The values stated in SI units are to be regarded as the standard. Values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides a means of measuring the water retention of flat specimens of rigid thermal insulation as a result of immersion in water and exposure to drying conditions.1.1 This test method determines the amount of water retained (excluding surface water) by flat specimens of rigid thermal insulations after immersion and exposure to drying conditions. This test method is intended to be used for the characterization of materials in the laboratory. It is not intended to simulate any particular environmental condition potentially encountered in building construction applications.1.2 This test method does not address all the possible mechanisms of water intake and retention and related phenomena for rigid thermal insulations. It relates only to those conditions outlined in 1.1. Determination of moisture accumulation in thermal insulations due to partial immersion, water vapor transmission, internal condensation, freeze-thaw cycling, or a combination of these effects requires different test procedures.1.3 This test method does not address or attempt to quantify the drainage characteristics of materials.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems has the potential to result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D2070-23 Standard Test Method for Thermal Stability of Hydraulic Oils Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Thermal stability characterizes physical and chemical property changes which may adversely affect an oil's lubricating performance. This test method evaluates the thermal stability of a hydraulic oil in the presence of copper and steel at 135 °C. No correlation of the test to field service has been made.1.1 This test method2 is designed primarily to evaluate the thermal stability of hydrocarbon based hydraulic oils although oxidation may occur during the test.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Thermal conductivity measurements on small insulation specimens are important during new product development processes or when larger specimens cannot be collected during forensic investigation (that is, failure analysis) (1, 2).5.2 Numerous research projects have recently been initiated to develop insulation materials that have very high thermal resistivities (greater than 83 (m K)/W). Projects ranging from coatings to improve the thermal performance of single pane/layer glazing systems to the development of novel insulation products for building envelopes are being undertaken (1-4). All these projects have struggled in the development of new material technologies due to the difficulty associated with the measurement of thermal conductivity of small sections (approximately 0.025 m by 0.025 m) of high thermal resistance materials. As new materials are being developed, the size of each test specimen impacts the cost of development. Most of the existing test equipment and the methods do not align with the researcher’s need; the equipment requires a large specimen size is time consuming, and expensive to produce.5.3 This practice provides a standardized procedure to enable the thermal characterization of small specimens of insulation materials. Accurate, and reliable thermal metrology to assess thermal properties of new insulation materials, such as novel very low thermal conductivity (< 0.01 W/ (m K)) nanomaterials or bio-based foam insulations, in small material sample sections, and minimal data analysis requirements is the desired outcome of this practice.5.4 The ratio of the area of the specimen and the heat flux transducer has a significant impact on the uncertainty of the results obtained from this practice. As the specimen area decreases this ratio decreases, a smaller percentage of the total heat flow is associated with the unknown specimen. Information from the literature (4) shows that some heat-flow-meter apparatus, generally not available commercially and used by the research laboratories only, can be modified to change out the heat flux transducer so that transducers of varying sizes can be deployed. The observations presented in Fig. 2 were obtained from the measurements done by such a heat-flow-meter apparatus that was modified to change out the heat flux transducer. Fig. 2 demonstrates the significance of the ratio of the area of the specimen and the heat flux transducer on the accuracy of the thermal conductivity measurement using this Practice. This exercise is not a required part of this Practice and Fig. 2 is for information only.FIG. 2 Example of a data set obtained from 0.010 m2 (that is, 0.10 m × 0.10 m) heat flux transducer (heat flow) exploring the uncertainty (that is, difference between full size XPS specimen and smaller XPS specimen placed inside the mask) of varying thicknesses, 0.005 m, 0.010 m, and 0.020 m1.1 This practice covers the measurement of steady state thermal transmission properties of the small flat slab thermal insulation specimen using a heat-flow-meter apparatus.1.2 This practice provides a supplemental procedure for use in conjunction with Test Method C518 for testing a small specimen. This practice is limited to only small specimens and, in all other particulars, the requirements of Test Method C518 apply.1.3 This practice characterizes small specimens having lateral dimensions less than the lateral dimensions of the heat flux transducer used to measure the heat flow. The procedure in Test Method C518 shall be used for specimens having lateral dimensions equal to or larger than the lateral dimensions of the heat flux transducer.NOTE 1: The lower limit for specimen size is typically determined by the user for their particular material. As an example, Ref. (1)2 established a lower limit for specimen dimensions of 0.1 m by 0.1 m for several different thermal insulation materials for a 0.3 m by 0.3 m heat-flow-meter apparatus having a heat flux transducer 0.15 m by 0.15 m.1.4 This practice is intended only for research purposes, in particular, when larger specimens are unavailable. This practice shall not be used in conjunction with Test Method C518 for certification testing of products; compliance with ASTM Specifications; or compliance with regulatory or building code requirements.1.5 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this practice.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Heat transfer fluids degrade when exposed to sufficiently high temperatures. The amount of degradation increases as the temperature increases or the length of exposure increases, or both. Due to reactions and rearrangement, degradation products can be formed. Degradation products include high and low boiling components, gaseous decomposition products, and products that cannot be evaporated. The type and content of degradation products produced will change the performance characteristics of a heat transfer fluid. In order to evaluate thermal stability, it is necessary to quantitatively determine the mass percentages of high and low boiling components, as well as gaseous decomposition products and those that cannot be vaporized, in the thermally stressed heat transfer fluid.5.2 This test method differentiates the relative stability of organic heat transfer fluids at elevated temperatures in the absence of oxygen and water under the conditions of the test.5.3 The user shall determine to his own satisfaction whether the results of this test method correlate to field performance. Heat transfer fluids in industrial plants are exposed to a variety of additional influencing variables. Interaction with the plant's materials, impurities, heat build-up during impaired flow conditions, the temperature distribution in the heat transfer fluid circuit, and other factors can also lead to changes in the heat transfer fluid. The test method provides an indication of the relative thermal stability of a heat transfer fluid, and can be considered as one factor in the decision-making process for selection of a fluid.5.4 The accuracy of the results depends very strongly on how closely the test conditions are followed.5.5 This test method does not possess the capability to quantify or otherwise assess the formation and nature of thermal decomposition products within the unstressed fluid boiling range. Decomposition products within the unstressed fluid boiling range may represent a significant portion of the total thermal degradation.1.1 This test method covers the determination of the thermal stability of unused organic heat transfer fluids. The procedure is applicable to fluids used for the transfer of heat at temperatures both above and below their boiling point (refers to normal boiling point throughout the text unless otherwise stated). It is applicable to fluids with maximum bulk operating temperature between 260 °C (500 °F) and 454 °C (850 °F). The procedure shall not be used to test a fluid above its critical temperature. In this test method, the volatile decomposition products are in continuous contact with the fluid during the test. This test method will not measure the thermal stability threshold (the temperature at which volatile oil fragments begin to form), but instead will indicate bulk fragmentation occurring for a specified temperature and testing period. Because potential decomposition and generation of high pressure gas may occur at temperatures above 260 °C (500 °F), do not use this test method for aqueous fluids or other fluids which generate high-pressure gas at these temperatures.1.2 DIN Norm 51528 and GB/T 23800 cover other test methods that are similar to this test method.1.3 The applicability of this test method to siloxane-based heat transfer fluids has not been determined.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.2, 8.8, 8.9, and 8.10.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Insulating cement must be mixed with water and molded to prepare for testing.1.1 This practice covers mixing thermal insulating cement samples with water in the preparation of specimens for use in all tests on the cement.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is designed to measure and compare thermal properties of materials under controlled conditions and their ability to maintain required thermal conductance levels.1.1 This test method covers a steady-state technique for the determination of the thermal conductivity of carbon materials in thicknesses of less than 25 mm. The test method is useful for homogeneous materials having a thermal conductivity in the approximate range 1< λ < 30 W/(m·K), (thermal resistance in the range from 10 to 400 × 10−4 m2 ·K/W) over the approximate temperature range from 150 K to 600 K. It can be used outside these ranges with reduced accuracy for thicker specimens and for thermal conductivity values up to 60 W/(m·K).NOTE 1: It is not recommended to test graphite cathode materials using this test method. Graphites usually have a very low thermal resistance, and the interfaces between the specimen to be tested and the instrument become more significant than the specimen itself.1.2 This test method is similar in concept to Test Methods E1530 and C518. Significant attention has been paid to ensure that the thermal resistance of contacting surfaces is minimized and reproducible.1.3 The values stated in SI units are regarded as standard.1.3.1 Exception—The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E2550-21 Standard Test Method for Thermal Stability by Thermogravimetry Active 发布日期 :  1970-01-01 实施日期 : 

5.1 Thermogravimetry provides a rapid method for determining the thermal decomposition and reaction mass change of a material.5.2 This test method is useful in detecting potentially hazardous reactions and in estimating the temperatures at which these reactions occur. This test method is recommended as a screening test for detecting the thermal hazards of an uncharacterized material or mixture (see Section 8).5.3 Energetic materials, pharmaceuticals and polymers are examples of materials for which this test might be useful. This test is especially useful for materials having melting points that overlap with the onset of reaction or decomposition.NOTE 1: In differential scanning calorimetry (DSC), the melting endotherm may interfere with the determination of the onset temperature for reaction or decomposition.5.4 This test is not suitable for materials that sublime or vaporize in the temperature range of interest. A sample with volatile impurities needs to be purified prior to testing by thermogravimetric analysis. Alternatively, the sample can be tested as is, however, special caution is required during the data analysis. The mass loss due to the loss of impurity should not interfere with the determination of reaction or decomposition temperature.5.5 The four significant criteria of this test method are: the detection of a sample mass change; the extent of the mass change; the approximate temperature at which the event occurs; the observance of effects due to the atmosphere.1.1 This test method describes the assessment of material thermal stability through the determination of the temperature at which the materials start to decompose or react and the extent of the mass change using thermogravimetry. The test method uses minimum quantities of material and is applicable over the temperature range from ambient to 800 °C.1.2 The absence of reaction or decomposition is used as an indication of thermal stability in this test method under the experimental conditions used.1.3 This test method may be performed on solids or liquids, which do not sublime or vaporize in the temperature range of interest.1.4 This test method shall not be used by itself to establish a safe operating or storage temperature. It may be used in conjunction with other test methods (for example, Test Methods E487 and E537, and Guide E1981) as part of a hazard analysis of a material.1.5 This test method is normally applicable to reaction or decomposition occurring in the range from room temperature to 800 °C. The temperature range may be extended depending on the instrumentation used.1.6 This test method may be performed in an inert, a reactive or self-generated atmosphere.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
521 条记录,每页 15 条,当前第 18 / 35 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页