微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method evaluates puncture resistance of protective clothing materials which may include plastics or elastomeric films, coated fabrics, flexible materials, laminates, or textile materials.5.2 This test method is not intended to measure puncture resistance of all types of punctures encountered using protective clothing material. This test method involves a procedure where a puncture probe of specified dimensions is used for puncturing specimens.5.3 This test method evaluates puncture resistance of protective clothing materials, specifically for puncture forced on specimens perpendicular to material surface. There is no supporting structure under the material specimen.5.4 Evaluation of puncture resistance for snag-type puncture should be performed in accordance with Test Method D2582.1.1 This test method determines the puncture resistance of a protective clothing material specimen by measuring the force required to cause a pointed puncture probe to penetrate through the specimen. This test method describes three protocols that may be used: Method A, Method B, and Method C.1.1.1 Method A requires the use of Probe A only. The probe used for testing shall be recorded in the test report.1.1.1.1 Probe A may be used to measure puncture resistance for the following types of materials:(1) Elastomeric materials,(2) Textiles, and(3) Coated materials.1.1.2 Method B requires the use of Probe B. The probe used for testing shall be recorded in the test report.1.1.2.1 Probe B may be used to measure puncture resistance for the following types of materials:(1) Textiles.(2) Coated materials.NOTE 1: Probe B is not suited for measuring the puncture resistance of unsupported elastomeric materials.1.2 The values stated in SI units are to be regarded as the standard. The values in inch-pound units in brackets are for information purposes only. The values stated in each system may not be exact equivalents; therefore, each system must be used independently of the other, without combining values in any way.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Use this test method to measure the thermal protection provided by different materials, garments, clothing ensembles, and systems when exposed to a specified fire (see 3.2.2, 3.2.3, 4.1, and 10.4).5.1.1 This test method does not simulate high radiant exposures, for example, those found in electric arc flash exposures, some types of fire exposures where liquid or solid fuels are involved, nor exposure to nuclear explosions.5.2 This test method provides a measurement of garment and clothing ensemble performance on a stationary upright manikin of specified dimensions. This test method is used to provide predicted skin burn injury for a specific garment or protective clothing ensemble when exposed to a laboratory simulation of a fire. It does not establish a pass/fail for material performance.5.2.1 This test method is not intended to be a quality assurance test. The results do not constitute a material’s performance specification.5.2.2 The effects of body position and movement are not addressed in this test method.5.3 The measurement of the thermal protection provided by clothing is complex and dependent on the apparatus and techniques used. It is not practical in a test method of this scope to establish details sufficient to cover all contingencies. Departures from the instructions in this test method have the potential to lead to significantly different test results. Technical knowledge concerning the theory of heat transfer and testing practices is needed to evaluate if, and which departures from the instructions given in this test method are significant. Standardization of the test method reduces, but does not eliminate, the need for such technical knowledge. Report any departures along with the results.1.1 This test method is used to provide predicted human skin burn injury for single-layer garments or protective clothing ensembles mounted on a stationary upright instrumented manikin which are then exposed in a laboratory to a simulated fire environment having controlled heat flux, flame distribution, and duration. The average exposure heat flux is 84 kW/m2 (2 cal/s·cm2), with durations up to 20 s.1.2 The visual and physical changes to the single-layer garment or protective clothing ensemble are recorded to aid in understanding the overall performance of the garment or protective clothing ensemble and how the predicted human skin burn injury results can be interpreted.1.3 The skin burn injury prediction is based on a limited number of experiments where the forearms of human subjects were exposed to elevated thermal conditions. This forearm information for skin burn injury is applied uniformly to the entire body of the manikin, except the hands and feet. The hands and feet are not included in the skin burn injury prediction.1.4 The measurements obtained and observations noted can only apply to the particular garment(s) or ensemble(s) tested using the specified heat flux, flame distribution, and duration.1.5 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.6 This method is not a fire test response test method.1.7 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units or other units commonly used for thermal testing. If appropriate, round the non-SI units for convenience.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 This test method is based on Test Method F903 for measuring resistance of chemical protective clothing materials to penetration by liquids. This test method is normally used to evaluate specimens from individual finished items of protective clothing and individual samples of materials that are candidates for items of protective clothing.5.1.1 Finished items of protective clothing include gloves, arm shields, aprons, gowns, coveralls, hoods, and boots.5.1.2 The phrase “specimens from finished items” encompasses seamed and other discontinuous regions, as well as the usual continuous regions of protective clothing items.5.2 It is known that body fluids penetrating protective clothing materials are likely to carry microbiological contaminants; however, visual detection methods are not sensitive enough to detect minute amounts of liquid containing microorganisms (1-3).7 This test method uses media containing Phi-X174 Bacteriophage. The visual detection technique of this test method is supplemented with a biologically based assay capable of detecting virus under the specified test conditions.5.3 Test Method F1670/F1670M allows the screening of protective clothing materials for resistance to penetration with synthetic blood as a challenge liquid. Test Method F1670/F1670M uses the same penetration test cell and technique, but exposes material specimens to synthetic blood with visual detection of liquid penetration. Materials passing Test Method F1670/F1670M should then be tested against bacteriophage penetration using this test method to verify performance.5.4 This test method has been specifically designed for measuring penetration of a surrogate microbe for Hepatitis (B and C) and the Human Immunodeficiency Viruses. The surrogate, Phi-X174 Bacteriophage, used in this test method is similar to HCV in size and shape but also serves as a surrogate for HBV and HIV. Inferences about protection from other pathogens must be assessed on a case-by-case basis.5.5 Part of the protocol in Procedures A and B in Table 1 for exposing the protective clothing material specimens to the Phi-X174 Bacteriophage challenge suspension involves pressurization of the penetration cell to 13.8 kPa [2 psig]. This hydrostatic pressure has been documented to discriminate between protective clothing material performance and correlate with visual penetration results that are obtained with a human factors validation (4). Some studies, however, suggest that mechanical pressures exceeding 345 kPa [50 psig] can occur during actual clinical use (5, 6). Therefore, it is important to understand that this test method does not simulate all the physical stresses and pressures that might be exerted on protective clothing materials during actual use.5.6 Medical protective clothing materials are intended to be a barrier to blood, body fluids, and other potentially infectious materials. Many factors can affect the wetting and penetration characteristics of body fluids, such as surface tension, viscosity, and polarity of the fluids, as well as the structure and relative hydrophilicity or hydrophobicity of the materials. The surface tension range for blood and body fluids (excluding saliva) is approximately 0.042 to 0.060 N/m (7). To help simulate the wetting characteristics of blood and body fluids, the surface tension of the Phi-X174 Bacteriophage challenge suspension is adjusted to approximate the lower end of this surface tension range. This is accomplished by adding surfactant to the Phi-X174 Bacteriophage nutrient broth. The resulting surface tension of the Phi-X174 Bacteriophage challenge suspension is approximately 0.042 ± 0.002 N/m.5.7 Testing prior to degradation by physical, chemical, and thermal stresses which could negatively impact the performance of the protective material could lead to a false sense of security. Additional tests should be considered that assess the impact of storage conditions and shelf life on disposable products and the impact of laundering and sterilization on reusable products. The integrity of the protective barrier may also be compromised during use by such effects as flexing and abrasion (8). Prewetting agents, such as alcohol, and contaminating agents, such as perspiration, may also compromise the integrity of the protective barrier. If these conditions are of concern, the performance of protective clothing materials should be evaluated for Phi-X174 Bacteriophage penetration following an appropriate preconditioning technique representative of the expected conditions of use.5.8 This test method involves a sensitive assay procedure for determining protective clothing material resistance to penetration by a surrogate microbe. Because of the length of time required to complete this method, it may not be suitable for use as a material or protective clothing quality control or quality assurance procedure.5.9 If this procedure is used for quality control or to support broad product claims concerning the viral-resistant properties of materials used in protective clothing, proper statistical design and analysis of larger data sets than those specified in this test method should be performed.8 Examples of acceptable sampling plans can be found in MIL-STD-105, ANSI/ASQ Z1.4, and ISO 2859-1.5.10 This test method requires a working knowledge of basic microbiological techniques (9).1.1 This test method is used to measure the resistance of materials used in protective clothing to penetration by blood-borne pathogens using a surrogate microbe under conditions of continuous liquid contact. Protective clothing material pass/fail determinations are based on the detection of viral penetration.1.1.1 This test method is not always effective in testing protective clothing materials having thick, inner liners which readily absorb the liquid assay fluid.1.2 This test method does not apply to all forms or conditions of blood-borne pathogen exposure. Users of the test method should review modes for worker/clothing exposure and assess the appropriateness of this test method for their specific applications.1.3 This test method has been specifically defined for modeling the viral penetration of Hepatitis (B and C) and Human Immunodeficiency Viruses transmitted in blood and other potentially infectious body fluids. Inferences for protection from other pathogens must be assessed on a case-by-case basis.1.4 This test method addresses only the performance of materials or certain material constructions (for example, seams) used in protective clothing and determined to be viral resistant. This test method does not address the design, overall construction and components, or interfaces of garments or other factors which may affect the overall protection offered by the protective clothing.1.5 The values stated in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method determines the ignitability of materials in single or multiple layers.5.1.1 Material performance shall be determined from the ignitability of the specimen(s) and shall be reported as a probability of ignition at various incident energy levels.5.1.2 Materials which meet the flame resistance requirements of Specification F1506 do not require testing by this test method unless the mechanism of passing Specification F1506 involves melting and escape from the flame source (for example, coated fabrics, certain rainwear fabrics).5.2 This test method maintains the specimen in a static, vertical position and does not involve movement except that resulting from the exposure.5.3 This test method specifies a standard set of exposure conditions. Different exposure conditions may produce different results. In addition to the standard set of exposure conditions, other conditions representative of the expected hazard may be used.1.1 This test method is used to identify materials that are ignitable and that can continue to burn when exposed to an electric arc, and determines (a) the incident exposure energy that causes ignition, and (b) the probability of ignition.1.2 The specimens tested in this test method are materials fabricated in the form of shirts.1.3 This test method shall be used to measure and describe the properties of materials, products, or assemblies in response to convective and radiant energy generated by an electric arc under controlled laboratory conditions.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard shall not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.7 For specific precautions, see Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is intended for the determination of the arc rating of a material, or a combination of materials.5.1.1 Because of the variability of the arc exposure, different heat transmission values may be observed at individual sensors. Evaluate the results of each sensor in accordance with Section 12.5.2 This test method maintains the specimen in a static, vertical position and does not involve movement except that resulting from the exposure.5.3 This test method specifies a standard set of arc exposures performed under controlled laboratory conditions. Different exposure conditions have the potential to produce different results. In addition to the standard set of exposure conditions, other conditions representative of the expected hazard may be used and shall be documented in the reporting of the testing results.1.1 This test method is used to determine the arc rating of materials intended for use as flame resistant clothing for workers exposed to electric arcs that would generate heat flux rates of approximately 2100 kW/m2 [50 cal/cm2s] using an open air arc.1.2 This test method will determine the arc rating of materials which meet the following requirements: less than 150 mm [6 in.] char length and less than 2 s afterflame when tested in accordance with Test Method D6413.1.2.1 It is not the intent of this test method to evaluate non flame-resistant materials.1.3 The materials used in this test method are in the form of flat specimens.1.4 This test method shall be used to measure and describe the properties of materials, products, or assemblies in response to convective and radiant energy generated by an electric arc under controlled laboratory conditions.1.5 The values stated in SI units shall be regarded as standard except as noted. Within the text, alternate units are shown in brackets. The values stated in each system may not be exact equivalents therefore alternate systems must be used independently of the other. Combining values from the systems described in the text may result in nonconformance with the method.1.6 This test method does not apply to electrical contact or electrical shock hazards.1.7 This standard shall not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautions, see Section 7.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
96 条记录,每页 15 条,当前第 3 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页