微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The freezing point of an aviation fuel is the lowest temperature at which the fuel remains free of solid hydrocarbon crystals. These crystals can restrict the flow of fuel through the fuel system of the aircraft. The temperature of the fuel in the aircraft tank normally decreases during flight depending on aircraft speed, altitude, and flight duration. The freezing point of the fuel must always be lower than the minimum operational fuel temperature.5.2 Petroleum blending operations require precise measurement of the freezing point.5.3 This test method produces results which have been found to be equivalent to Test Method D2386 and expresses results to the nearest 0.1 °C, with improved precision over Test Method D2386. This test method also eliminates most of the operator time and judgment required by Test Method D2386.5.4 When specification requires Test Method D2386, do not substitute this test method or any other test method.1.1 This test method covers the determination of the temperature below which solid hydrocarbon crystals form in aviation turbine fuels.1.2 This test method is designed to cover the temperature range of −80 °C to 20 °C; however, 2003 Joint ASTM/IP Interlaboratory Cooperative Test Program mentioned in 12.4 has only demonstrated the test method with fuels having freezing points in the range of −42 °C to −60 °C.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.1, 7.3, and 7.5.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies. It defines a specific type of lead-free aviation gasoline; however, this specification does not include all gasoline satisfactory for reciprocating aviation engines. It is possible that certain equipment or conditions of use can bring about a wider or require a narrower range of characteristics than what is shown in this specification.1.1 This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies.1.2 This specification defines a specific type of aviation gasoline that contains no lead. It does not include all gasolines satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification.1.3 This specification, unless otherwise provided, prescribes the required properties of unleaded aviation gasoline at the time and place of delivery.1.4 The current purpose for the fuel specified herein is for certification and testing of an engine and engine components.1.5 The UL94 standard is to be used for engine calibration and FAA certification.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D3242-23 Standard Test Method for Acidity in Aviation Turbine Fuel Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM D1655-23a Standard Specification for Aviation Turbine Fuels Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers purchases of aviation turbine fuel under contract and is intended primarily for use by purchasing agencies. This specification does not include all fuels satisfactory for reciprocating aviation turbine engines, but rather, defines the following specific types of aviation fuel for civil use: Jet A; and Jet A-1. The fuels shall be sampled and tested appropriately to examine their conformance to detailed requirements as to composition, volatility, fluidity, combustion, corrosion, thermal stability, contaminants, and additives.1.1 This specification covers the use of purchasing agencies in formulating specifications for purchases of aviation turbine fuel under contract.1.2 This specification defines the minimum property requirements for Jet A and Jet A-1 aviation turbine fuel and lists acceptable additives for use in civil and military operated engines and aircraft. Specification D1655 was developed initially for civil applications, but has also been adopted for military aircraft. Guidance information regarding the use of Jet A and Jet A-1 in specialized applications is available in the appendix.1.3 This specification can be used as a standard in describing the quality of aviation turbine fuel from production to the aircraft. However, this specification does not define the quality assurance testing and procedures necessary to ensure that fuel in the distribution system continues to comply with this specification after batch certification. Such procedures are defined elsewhere, for example in ICAO 9977, EI/JIG Standard 1530, JIG 1, JIG 2, API 1543, API 1595, and ATA-103.1.4 This specification does not include all fuels satisfactory for aviation turbine engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification.1.5 Aviation turbine fuels defined by this specification may be used in other than turbine engines that are specifically designed and certified for this fuel.1.6 This specification no longer includes wide-cut aviation turbine fuel (Jet B). FAA has issued a Special Airworthiness Information Bulletin which now approves the use of Specification D6615 to replace Specification D1655 as the specification for Jet B and refers users to this standard for reference.1.7 The values stated in SI units are to be regarded as standard. However, other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method provides a gravimetric measurement of the particulate matter present in a sample of aviation turbine fuel delivered to a laboratory for evaluation. The objective is to minimize these contaminants to avoid filter plugging and other operational problems. Although tolerable levels of particulate contaminants have not yet been established for all points in fuel distribution systems, the total contaminant measurement is normally of most interest.1.1 This test method covers the gravimetric determination by filtration of particulate contaminant in a sample of aviation turbine fuel delivered to a laboratory.1.1.1 The sample is filtered through a test membrane and a control membrane using vacuum. The mass change difference identifies the contaminant level per unit volume.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see 4.2, 7.3, 7.5, 11.2, and X1.7.2. Before using this standard, refer to supplier's safety labels, material safety data sheets, and technical literature.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Mercaptan sulfur has an objectionable odor, an adverse effect on fuel system elastomers, and is corrosive to fuel system components.1.1 This test method covers the determination of mercaptan sulfur in gasolines, kerosines, aviation turbine fuels, and distillate fuels containing from 0.0003 % to 0.01 % by mass of mercaptan sulfur. Organic sulfur compounds such as sulfides, disulfides, and thiophene, do not interfere. Elemental sulfur in amounts less than 0.0005 % by mass  does not interfere. Hydrogen sulfide will interfere if not removed, as described in 10.2.1.2 The values in acceptable SI units are to be regarded as the standard.1.2.1 Exception—The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Sections 7, 9, 10, and Appendix X1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 DRA is frequently added into multiproduct pipelines to increase throughput or reduce energy requirements of fuel movement. Although these additives are not used in jet fuel, contamination can occur from other products if proper batching guidelines are not followed or by other cases of human error. CRC Report No. 642 reviewed the impact of DRA on jet fuel fit-for-purpose performance and concluded that the fuel spray angle and atomization capability of several engine-type fuel nozzles can be adversely affected impacting high altitude relight performance at elevated concentrations. A method that accurately quantifies the amount of DRA in jet fuel can be useful in confirming the absence of significant contamination to protect the safety of aviation operations. This test method is designed to measure down to sub-100 µg/L levels of DRA in aviation fuel.1.1 This test method covers the measurement of high molecular weight polymers, in particular pipeline drag reducer additive (DRA), in aviation turbine fuels with a 72 µg/L lower detection limit. The method cannot differentiate between different polymers types. Thus, any non-DRA high molecular weight polymer will cause a positive measurement bias. Further investigation is required to confirm the polymer detected is DRA.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

This specification covers the material, manufacturing, and specialized property requirements for producing special-purpose aviation distillate test fuels that are intended only for engineering and certification testing of aircraft, engines, and aircraft equipment. It deals with special-purpose test fuels that may be used to evaluate the operability, performance and durability of aviation compression-ignition engines when operating with fuels of marginal performance. Aviation distillate fuel, except as otherwise specified in this specification, shall consist predominantly of refined hydrocarbons derived from conventional sources such as crude oil, natural gas liquid condensates, heavy oil, shale oil, and oil sands. The use of middle distillate fuel blends containing components from other sources is permitted. This specification also lists acceptable additives for aviation distillate special-purpose test fuels. Use of this specification for engineering and certification testing of aircraft is not mandatory. It is directed at civil applications, and maintained as such, but may be adopted for military, government, or other specialized uses.1.1 This specification is intended to support purchasing agencies when formulating specifications for purchases of aviation distillate fuel under contract.1.2 This specification defines specialized property requirements to produce special-purpose aviation distillate test fuels that are intended only for engineering and certification testing of aircraft, engines, and aircraft equipment. Use of this specification for engineering and certification testing of aircraft is not mandatory. Its use is at the discretion of the aircraft manufacturer, engine manufacturer, or certification authorities when determining criteria for validation of aircraft equipment design.1.3 This specification defines special-purpose test fuels that may be used to evaluate the operability, performance and durability of aviation compression-ignition engines when operating with fuels of marginal performance. The aviation distillate test fuels defined in this specification are not intended for general purpose use in aircraft. This specification also lists acceptable additives for aviation distillate special-purpose test fuels.1.4 Specification D8147 is directed at civil applications, and maintained as such, but may be adopted for military, government, or other specialized uses.1.5 This specification can be used as a standard in describing the quality of aviation distillate fuel from production to the aircraft. However, this specification does not define the quality assurance testing and procedures necessary to ensure that fuel continues to comply with this specification after batch certification.1.6 This specification does not include all fuels satisfactory for aviation compression-ignition (CI) engines.1.7 The values stated in SI units are to be regarded as standard.1.7.1 Exception—Other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers Grade 82 unleaded aviation gasoline for use only in engines and associated aircraft that are specifically approved by the engine and aircraft manufacturers, and certified by the National Certifying Agencies to use this fuel. Aviation gasoline shall consist of blends of refined hydrocarbons derived from crude petroleum, natural gasoline or blends thereof, with specific aliphatic ethers, synthetic hydrocarbons, or aromatic hydrocarbons, and when applicable, methyl tertiarybutyl ether (MTBE). They may also contain antioxidants (oxidation inhibitors), metal deactivators, corrosion inhibitors, and fuel system icing inhibitors. The gasoline shall be tested and conform accordingly to the following property requirements: lean mixture knock value and motor method octane number; color; blue and red dye content; distillation temperature at % evaporated, end point, and residue content; distillation recovery; distillation loss; net heat of combustion; freezing point; vapor pressure; lead content; copper strip corrosion; sulfur content; potential gum; and alcohols and ether content (aliphatic ethers, methanol, and ethanol).1.1 This specification covers Grades UL82 and UL87 unleaded aviation gasolines, which are defined by this specification and are only for use in engines and associated aircraft that are specifically approved by the engine and aircraft manufacturers, and certified by the National Certifying Agencies to use these fuels. Components containing hetro-atoms (oxygenates) may be present within the limits specified.1.2 A fuel may be certified to meet this specification by a producer as Grade UL82 or UL87 aviation gasoline only if blended from component(s) approved for use in these grades of aviation gasoline by the refiner(s) of such components, because only the refiner(s) can attest to the component source and processing, absence of contamination, and the additives used and their concentrations. Consequently, reclassifying of any other product to Grade UL82 or Grade UL87 aviation gasoline does not meet this specification.1.3 Appendix X1 contains an explanation for the rationale of the specification. Appendix X2 details the reasons for the individual specification requirements.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
140 条记录,每页 15 条,当前第 4 / 10 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页