微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The bending fatigue test described in this test method provides information on the ability of a copper alloy flat sheet and strip of spring material to resist the development of cracks or general mechanical deterioration as a result of a relatively large number of cycles (generally in the range 105 to 108) under conditions of constant displacement.5.2 This test method is primarily a research and development tool which may be used to determine the effect of variations in materials on fatigue strength and also to provide data for use in selecting copper alloy spring materials for service under conditions of repeated strain cycling.5.3 The results are suitable for direct application in design only when all design factors such as loading, geometry of part, frequency of straining, and environmental conditions are known. The test method is generally unsuitable for an inspection test or a quality control test due to the amount of time and effort required to collect the data.1.1 This test method establishes the requirements for the determination of the reversed or repeated bending fatigue properties of copper alloy flat sheet or strip of spring materials by fixed cantilever, constant deflection (that is, constant amplitude of displacement)-type testing machines. This method is limited to flat sheet or strip ranging in thickness from 0.005 in. to 0.062 in. (0.13 mm to 1.57 mm), to a fatigue life range of 105 to 108 cycles, and to conditions where no significant change in stress-strain relations occurs during the test.NOTE 1: This implies that the load-deflection characteristics of the material do not change as a function of the number of cycles within the precision of measurement. There is no significant cyclic hardening or softening.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazard caveat pertains only to the test methods(s) described in this test method.1.3.1 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Because of wide variations in service conditions, no correlation between these accelerated tests and service performance is given or implied. However, the test methods yield data that can be used to estimate relative service quality of different compounds. They are often applicable to research and development studies.1.1 These test methods may be used to compare the fatigue characteristics and rate of heat generation of different rubber vulcanizates when they are subjected to dynamic compressive strains.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

4.1 This practice may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites are generally characterized by crystalline matrices and ceramic fiber reinforcements. These materials are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and high-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate the mechanical behavior of monolithic advanced ceramics, the nonuniform stress distribution in a flexural test specimen in addition to dissimilar mechanical behavior in tension and compression for CFCCs leads to ambiguity of interpretation of test results obtained in flexure for CFCCs. Uniaxially loaded tensile tests provide information on mechanical behavior for a uniformly stressed material.4.3 The cyclic fatigue behavior of CFCCs can have appreciable nonlinear effects (for example, sliding of fibers within the matrix) which may be related to the heat transfer of the specimen to the surroundings. Changes in test temperature, frequency, and heat removal can affect test results. It may be desirable to measure the effects of these variables to more closely simulate end-use conditions for some specific application.4.4 Cyclic fatigue by its nature is a probabilistic phenomenon as discussed in STP 91A (1) and STP 588 (2).4 In addition, the strengths of the brittle matrices and fibers of CFCCs are probabilistic in nature. Therefore, a sufficient number of test specimens at each testing condition is required for statistical analysis and design, with guidelines for sufficient numbers provided in STP 91A (1), STP 588 (2), and Practice E739. Studies to determine the influence of test specimen volume or surface area on cyclic fatigue strength distributions for CFCCs have not been completed. The many different tensile test specimen geometries available for cyclic fatigue testing may result in variations in the measured cyclic fatigue behavior of a particular material due to differences in the volume of material in the gage section of the test specimens.4.5 Tensile cyclic fatigue tests provide information on the material response under fluctuating uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix microcracking, fiber/matrix debonding, delamination, cyclic fatigue crack growth, etc.)4.6 Cumulative damage due to cyclic fatigue may be influenced by testing mode, testing rate (related to frequency), differences between maximum and minimum force (R or Α), effects of processing or combinations of constituent materials, environmental influences (including test environment and pre-test conditioning), or combinations thereof. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth which can be difficult to quantify. Other factors which may influence cyclic fatigue behavior are: matrix or fiber material, void or porosity content, methods of test specimen preparation or fabrication, volume percent of the reinforcement, orientation and stacking of the reinforcement, test specimen conditioning, test environment, force or strain limits during cycling, wave shapes (that is, sinusoidal, trapezoidal, etc.), and failure mode of the CFCC.4.7 The results of cyclic fatigue tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the cyclic fatigue behavior of the entire, full-size end product or its in-service behavior in different environments.4.8 However, for quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.9 The cyclic fatigue behavior of a CFCC is dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. There can be significant damage in the CFCC test specimen without any visual evidence such as the occurrence of a macroscopic crack. This can result in a loss of stiffness and retained strength. Depending on the purpose for which the test is being conducted, rather than final fracture, a specific loss in stiffness or retained strength may constitute failure. In cases where fracture occurs, analysis of fracture surfaces and fractography, though beyond the scope of this practice, is recommended.1.1 This practice covers the determination of constant-amplitude, axial tension-tension cyclic fatigue behavior and performance of continuous fiber-reinforced advanced ceramic composites (CFCCs) at ambient temperatures. This practice builds on experience and existing standards in tensile testing CFCCs at ambient temperatures and addresses various suggested test specimen geometries, specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates and frequencies, allowable bending, and procedures for data collection and reporting. This practice does not apply to axial cyclic fatigue tests of components or parts (that is, machine elements with nonuniform or multiaxial stress states).1.2 This practice applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: uni-directional (1-D), bi-directional (2-D), and tri-directional (3-D) or other multi-directional reinforcements. In addition, this practice may also be used with glass (amorphous) matrix composites with 1-D, 2-D, 3-D, and other multi-directional continuous fiber reinforcements. This practice does not directly address discontinuous fiber-reinforced, whisker-reinforced or particulate-reinforced ceramics, although the methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 High-strength, monolithic advanced ceramic materials are generally characterized by small grain sizes (<50 μm) and bulk densities near the theoretical density. These materials are candidates for load-bearing structural applications requiring high degrees of wear and corrosion resistance, and high-temperature strength. Although flexural test methods are commonly used to evaluate strength of advanced ceramics, the nonuniform stress distribution in a flexure specimen limits the volume of material subjected to the maximum applied stress at fracture. Uniaxially loaded tensile strength tests may provide information on strength-limiting flaws from a greater volume of uniformly stressed material.4.3 Cyclic fatigue by its nature is a probabilistic phenomenon as discussed in STP 91A and STP 588 (1, 2).4 In addition, the strengths of advanced ceramics are probabilistic in nature. Therefore, a sufficient number of test specimens at each testing condition is required for statistical analysis and design, with guidelines for sufficient numbers provided in STP 91A (1), STP 588 (2), and Practice E739. The many different tensile specimen geometries available for cyclic fatigue testing may result in variations in the measured cyclic fatigue behavior of a particular material due to differences in the volume or surface area of material in the gage section of the test specimens.4.4 Tensile cyclic fatigue tests provide information on the material response under fluctuating uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, microcracking, cyclic fatigue crack growth, etc.).4.5 Cumulative damage processes due to cyclic fatigue may be influenced by testing mode, testing rate (related to frequency), differences between maximum and minimum force (R or Α), effects of processing or combinations of constituent materials, or environmental influences, or both. Other factors that influence cyclic fatigue behavior are: void or porosity content, methods of test specimen preparation or fabrication,test specimen conditioning, test environment, force or strain limits during cycling, wave shapes (that is, sinusoidal, trapezoidal, etc.), and failure mode. Some of these effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be difficult to quantify. In addition, surface or near-surface flaws introduced by the test specimen fabrication process (machining) may or may not be quantifiable by conventional measurements of surface texture. Therefore, surface effects (for example, as reflected in cyclic fatigue reduction factors as classified by Marin (3)) must be inferred from the results of numerous cyclic fatigue tests performed with test specimens having identical fabrication histories.4.6 The results of cyclic fatigue tests of specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the cyclic fatigue behavior of the entire full-size end product or its in-service behavior in different environments.4.7 However, for quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.8 The cyclic fatigue behavior of an advanced ceramic is dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. There can be significant damage in the test specimen without any visual evidence such as the occurrence of a macroscopic crack. This can result in a specific loss of stiffness and retained strength. Depending on the purpose for which the test is being conducted, rather than final fracture, a specific loss in stiffness or retained strength may constitute failure. In cases where fracture occurs, analysis of fracture surfaces and fractography, though beyond the scope of this practice, are recommended.1.1 This practice covers the determination of constant-amplitude, axial, tension-tension cyclic fatigue behavior and performance of advanced ceramics at ambient temperatures to establish “baseline” cyclic fatigue performance. This practice builds on experience and existing standards in tensile testing advanced ceramics at ambient temperatures and addresses various suggested test specimen geometries, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates and frequencies, allowable bending, and procedures for data collection and reporting. This practice does not apply to axial cyclic fatigue tests of components or parts (that is, machine elements with nonuniform or multiaxial stress states).1.2 This practice applies primarily to advanced ceramics that macroscopically exhibit isotropic, homogeneous, continuous behavior. While this practice applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics, as well as certain discontinuous fibre-reinforced composite ceramics, may also meet these macroscopic behavior assumptions. Generally, continuous fibre-reinforced ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this practice to these materials is not recommended.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E2714-13(2020) Standard Test Method for Creep-Fatigue Testing Active 发布日期 :  1970-01-01 实施日期 : 

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 Refer to Guide D8509.1.1 This practice provides instructions for modifying static open-hole tensile and compressive strength test methods to determine the fatigue behavior of composite materials subjected to cyclic tensile or compressive forces, or both. The composite material forms are limited to continuous-fiber reinforced polymer matrix composites in which the laminate is both symmetric and balanced with respect to the test direction. The range of acceptable test laminates and thicknesses are described in 8.2.1.2 This practice supplements Test Methods D5766/D5766M and D6484/D6484M with provisions for testing specimens under cyclic loading. Several important test specimen parameters, for example fatigue force (stress) ratio, are not mandated by this practice; however, repeatable results require that these parameters be specified and reported.1.3 This practice is limited to test specimens subjected to constant amplitude uniaxial loading, where the machine is controlled so that the test specimen is subjected to repetitive constant amplitude force (stress) cycles. Either engineering stress or applied force may be used as a constant amplitude fatigue variable. The repetitive loadings may be tensile, compressive, or reversed, depending upon the test specimen and procedure utilized.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4.1 Within the text the inch-pound units are shown in brackets.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide covers recommended formats for the recording of fatigue and fracture test data for inclusion in computerized material property databases. From this information, the database designer should be able to construct the data dictionary preparatory to developing a database schema. Not covered within the scope of this guide are guidelines for the identification of the materials themselves, or descriptions of the materials, or both. Those guidelines are covered in separate standards, such as Guides E1338 and E1339. 1.2 The recommended format specified in this guide is suggested for use in recording data in a database, that is different from contractual reporting of actual test results for a specific lot of material. The latter type of information is specified in materials specifications shown in business transactions and is subject to agreement between supplier and purchaser. 1.3 This guide is specific to plane-strain fracture toughness test data based on Test Method E399, fatigue crack growth rate test data based on Test Method E647, and strain-controlled fatigue testing based on Practice E606. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 777元 / 折扣价: 661 加购物车

在线阅读 收 藏

5.1 This test method is not recommended for acceptance testing of commercial shipments in the absence of reliable information on between-laboratory precision.5.1.1 If there are differences of practical significance between the reported test results for two laboratories (or more), a comparative test should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples should be used that are as homogeneous as possible, that are drawn from a material from which the disparate test results were obtained, and that are randomly assigned in equal numbers to each laboratory for testing. Other fabrics with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.1.1 This test method covers the determination of fatigue of tire cords in rubber due to compression or extension, or both, using a disc fatigue tester. The fatigue is measured as a loss in strength.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices to determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E1823-23 Standard Terminology Relating to Fatigue and Fracture Testing Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This terminology contains definitions, definitions of terms specific to certain standards, symbols, and abbreviations approved for use in standards on fatigue and fracture testing. The definitions are preceded by two lists. The first is an alphabetical listing of symbols used. (Greek symbols are listed in accordance with their spelling in English.) The second is an alphabetical listing of relevant abbreviations.1.2 This terminology includes Annex A1 on Units and Annex A2 on Designation Codes for Specimen Configuration, Applied Loading, and Crack or Notch Orientation.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 A method for obtaining fatigue strain (stress) at a specific life is of interest to the wire manufacturer, designer and consumer. The method is useful in production control, material acceptance and determination of the fatigue strain (stress) of the wire at a specific fatigue life, that is, fatigue strength. Rotating bending fatigue testing of small diameter solid round wire is possible by looping a specimen of predetermined length through an arc of 90° to 180°. The bending strain (stress) is determined from the geometry of the loop thusly formed. The methodology is capable of high frequency testing provided the temperature of the test article is constant and there is no adiabatic heating of the wire. A constant temperature can be maintained by immersing the specimen in a constant temperature fluid bath or test media. This makes it practical to quickly test a sufficient number of specimens to provide a statistical frequency distribution or survival probability distribution of fatigue life at a given strain (stress). Fatigue life information is useful to ascertain wire in-service durability and to assess, for example, the effects of melt practice and cold work processing.1.1 This test method is intended as a procedure for the performance of rotating bending fatigue tests of solid round fine wire to obtain the fatigue strength of metallic materials at a specified life in the fatigue regime where the strains (stresses) are predominately and nominally linear elastic. This test method is limited to the fatigue testing of small diameter solid round wire subjected to a constant amplitude periodic strain (stress). The methodology can be useful in assessing the effects of internal material structure, such as inclusions, in melt technique and cold work processing studies. However, there is a caveat. The strain, due to the radial strain gradient imposed by the test methodology, is a maximum at the surface and zero at the centerline. Thus the test method may not seek out the “weakest link,” largest inclusions, that govern uniaxial high cycle fatigue life where the strain is uniform across the cross section and where fatigue damage initiates at a subsurface location (1-5).2 Also, pre-strain, which can influence fatigue life, is not included in this test method.NOTE 1: The following documents, although not specifically mentioned, are considered sufficiently important to be listed in this test method:ASTM STP 566 Handbook of Fatigue TestingASTM STP 588 Manual on Statistical Planning and Analysis for Fatigue ExperimentsASTM STP 731 Tables for Estimating Median Fatigue Limits (6-8)1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
107 条记录,每页 15 条,当前第 4 / 8 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页