微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Engines operating under severe conditions involving high temperatures, hot spot areas, entrained air, or small cooling systems, or combinations thereof, are placing greater emphasis on engine coolant oxidation stability and corrosion protection. This test method provides an accelerated test method to assess engine coolant performance under high temperature oxidizing test conditions of new, used, or recycled engine coolants, or combinations thereof. The test method may also serve as a screening tool to determine oxidation stability. The test results of this method cannot stand alone as evidence of satisfactory oxidation stability and corrosion protection. The actual service of an engine coolant formulation can be determined only by more comprehensive bench, dynamometer, and field tests.1.1 This test method covers determination of engine coolant corrosion protection and stability under accelerated thermal and oxidizing conditions using a rotary pressure vessel.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 6.2, 6.3, 6.4, 6.5, 6.7, 6.8, 6.9, 6.10, 11.1, 12.8, 12.9, and 12.10.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

This specification covers the biological quality specifications or requirements, or both, for Industry Reference Materials (IRMs) used to conduct product, specification, and development testing in the rubber and carbon black industries. A new lot of material can be accepted as an IRM only if complies with the requirements prescribed in this specification. However, there are other requirements given in Practice D4678 that shall be met before a candidate material can be formally accepted as a biological IRM. Biological IRMs covered by the specification include ammoniated latex antigenic protein, rabbit anti-AL antisera, and mouse monoclonal antibody.1.1 This specification covers the biological quality specifications or requirements, or both, for Industry Reference Materials (IRMs) as cited in Practice D4678 and other standards.1.2 IRMs, as evaluated and referenced in Practice D4678, are vitally important to conduct product, specification, and development testing in the rubber and carbon black industries.1.3 Before a new lot of material can be accepted as an IRM, it must comply with the specifications prescribed in this specification. However, these specifications are only part of the requirements. Other requirements as given in Practice D4678 shall be met before a candidate material can be formally accepted as a biological IRM.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 Chloride present in aviation turbine fuel can originate from refinery salt drier carryover or possibly from seawater contamination (for example, product transferred by barge). Elevated chloride levels have caused corrosive and abrasive wear of aircraft fuel control systems leading to engine failure.41.1 This test method covers a rapid means of determining chloride content of aviation turbine fuel. This methodology is applicable for chloride concentrations between 0 mg/L to 0.5 mg/L. This methodology will not detect chlorine originating from chlorinated organic compounds (that is, covalent bond).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏
962 条记录,每页 15 条,当前第 6 / 65 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页