微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The extensive and widespread use of organochlorine pesticides and PCBs has resulted in their presence in all parts of the environment. These compounds are persistent and may have adverse effects on the environment. Thus, there is a need to identify and quantitate these compounds in water samples.1.1 This test method (1-3)2 is applicable to the determination of the following analytes in finished drinking water, drinking water during intermediate stages of treatment, and the raw source water: Analyte Chemical Abstract ServiceRegistry Number AAlachlor 5972-60-8  Aldrin 309-00-2  Chlordane 57-74-9  Dieldrin 60-57-1  Endrin 72-20-8  Heptachlor 76-44-8  Heptachlor Epoxide 1024-57-3  Hexachlorobenzene 118-74-1  Lindane 58-89-9  Methoxychlor 72-43-5  Toxaphene 8001-35-2  Aroclor B 1016 12674-11-2  Aroclor B 1221 11104-28-2  Aroclor B 1232 11141-16-5  Aroclor B 1242 53469-21-9  Aroclor B 1248 12672-29-6  Aroclor B 1254 11097-69-1  Aroclor B 1260 11096-82-5  (A) Numbering system of CAS Registry Services, P.O. Box 3343, Columbus, OH 43210-0334.(B) Aroclor is a registered trademark of Monsanto Co.1.2 Detection limits for most test method analytes are less than 1 μg/L. Actual detection limits are highly dependent on the characteristics of the sample matrix and the gas chromatography system. Table 1 contains the applicable concentration range for the precision and bias statements. Only Aroclor 1016 and 1254 were included in the interlaboratory test used to derive the precision and bias statements. Data for other PCB products are likely to be similar.(A) Bias = C − X.(B) X  = Mean recovery.(C) C = True concentration value.(D) St = Overall standard deviation.(E) So = Single analyst standard deviation.1.3 Chlordane, toxaphene, and Aroclor products (polychlorinated biphenyls) are multicomponent materials. Precision and bias statements reflect recovery of these materials dosed into water samples. The precision and bias statements may not apply to environmentally altered materials or to samples containing complex mixtures of polychlorinated biphenyls (PCBs) and organochlorine pesticides.1.4 For compounds other than those listed in 1.1 or for other sample sources, the analyst must demonstrate the applicability of this test method by collecting precision and bias data on spiked samples (groundwater, tap water) (4) and provide qualitative confirmation of results by gas chromatography/mass spectrometry (GC/MS) (5) or by GC analysis using dissimilar columns.1.5 This test method is restricted to use by or under the supervision of analysts experienced in the use of GC and in the interpretation of gas chromatograms. Each analyst must demonstrate the ability to generate acceptable results using the procedure described in Section 13.1.6 Analytes that are not separated chromatographically, (analytes that have very similar retention times) cannot be individually identified and measured in the same calibration mixture or water sample unless an alternative technique for identification and quantitation exists (see 13.4).1.7 When this test method is used to analyze unfamiliar samples for any or all of the analytes listed in 1.1, analyte identifications and concentrations should be confirmed by at least one additional technique.1.8 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 This test method is useful for characterization and rapid quantification of PAH mixtures including petroleum oils, fuels, creosotes, and industrial organic mixtures, either waterborne or obtained from tanks.5.2 The unknown PAH mixture is first characterized by its fluorescence emission and synchronous scanning spectra. Then a suitable site-specific calibration standard with similar spectral characteristics is selected as described in Annex A1. This calibration standard may also be well-characterized by other independent methods such as gas chromatography (GC), GC-mass spectrometry (GC-MS), or high performance liquid chromatography (HPLC). Some suggested independent analytical methods are included in References (1-7)4 and Test Method D4657. Other analytical methods can be substituted by an experienced analyst depending on the intended data quality objectives. Peak maxima intensities of appropriate fluorescence emission spectra are then used to set up suitable calibration curves as a function of concentration. Further discussion of fluorescence techniques as applied to the characterization and quantification of PAHs and petroleum oils can be found in References (8-18).5.3 For the purpose of the present test method polynuclear aromatic hydrocarbons are defined to include substituted polycyclic aromatic hydrocarbons with functional groups such as carboxyl acid, hydroxy, carbonyl and amino groups, and heterocycles giving similar fluorescence responses to PAHs of similar molecular weight ranges. If PAHs in the more classic definition, that is, unsubstituted PAHs, are desired, chemical reactions, extractions, or chromatographic procedures may be required to eliminate these other components. Fortunately, for the most commonly expected PAH mixtures, such substituted PAHs and heterocycles are not major components of the mixtures and do not cause serious errors.1.1 This test method covers a means for quantifying or characterizing total polycyclic aromatic hydrocarbons (PAHs) by fluorescence spectroscopy (Fl) for waterborne samples. The characterization step is for the purpose of finding an appropriate calibration standard with similar emission and synchronous fluorescence spectra.1.2 This test method is applicable to PAHs resulting from petroleum oils, fuel oils, creosotes, or industrial organic mixtures. Samples can be weathered or unweathered, but either the same material or appropriately characterized site-specific PAH or petroleum oil calibration standards with similar fluorescence spectra should be chosen. The degree of spectral similarity needed will depend on the desired level of quantification and on the required data quality objectives.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The Clean Water Act promulgated the implementation of water quality standards and contamination limits for a wide range of pollutants including oil and grease. Specifically, the EPA prohibits “the discharges of oil that cause a film or sheen upon or cause discoloration of the surface of the water.” Several state and local agencies have adopted this statement in addition to setting concentration limits, that is, 15 mg/L or even 5 mg/L. The purpose of this practice is to evaluate the performance of a separator in regards to the regulations and user requirements.5.2 Another purpose of this practice is to establish that a separator containing oil at its rated capacity would still be capable of meeting the above criteria when subjected to run-off.5.3 This practice is not applicable if the influent to a separator contained a sudden release as much higher concentrations would be expected. For this case, see Practice D6157.5.4 This practice is not applicable if the influent to a separator is conveyed by a pumping means.5.5 The data generated in this method is valid for the separators tested only. The results of these tests may be extrapolated to smaller or larger size separators provided that applicable geometric and dynamic similitude are maintained. Where sound engineering method limits the use of extrapolation, that size unit must be subjected to testing.5.6 The flow rate for all the tests must equal the manufacturer's total rated flow for the given separator at a given influent contamination level and for the selected effluent peak contamination concentration.1.1 This practice covers the procedure, any necessary related apparatus, and the sampling technique to be used in determining the performance characteristics of oil/water separators subjected to contaminated run-off.1.2 This practice does not address the determination of the performance characteristics of an oil/water separator subjected to the sudden release of a relatively large quantity of hydrocarbons that may appear, in pure form or at high concentration, in the influent to the separator. In this case, refer to Practice D6157.1.3 This practice does not address the determination of the performance characteristics of an oil/water separator subjected to a mechanically emulsified influent such as provided by a pump.1.4 This practice does not investigate the ability of the separator to handle debris or suspended solids, that is, grit or tree leaves.1.5 While the effluent may meet code requirements for total oil and grease content, this practice does not address the presence of soluble organics, that is, benzene, toluene, ethyl-benzene, and zylene (BTEXs) which may be detected in the effluent. It also does not make any provisions for the effects of detergents, surfactants, soaps, or any water soluble matter (that is, salts), or any portion of an essentially insoluble matter that may be found in solution on separation. (Effects of certain water soluble chemicals or solids may be investigated by adding them to the water at predetermined constant concentrations.)1.6 In order to estimate the effect of water temperature on the performance of the separator, the tests described in this practice must be performed at two water temperatures. The selected temperatures must be at least 10°C (18°F) apart, with the temperature ranging from a minimum of 0°C (32°F) to a maximum of 50°C (122°F).1.7 This practice does not make any provisions for the variation of pH or temperature during a test run. Refer to Appendix X1 for further detail.1.8 This practice can be used with a variety of hydrocarbons. It adopts No. 2 fuel oil with a density2 of 845 kg/m3 (52.73 lbm/ft3) and a viscosity2 of 1.9 to 4.1 centistokes at 40°C (104°F) and SAE 90 lubricating oil with a density2 of 930 kg/m3 (58 lbm/ft3) at 15.5°C (60°F) and a viscosity (see SAE J313) of 13.5 to < 24 centistokes at 100°C (212°F) as the comparative testing media. It is understood that the results obtained from this practice are only directly applicable to No. 2 fuel oil and SAE 90 lubricating oil for the tested concentrations and only careful interpolation or extrapolation, or both, is allowed to other hydrocarbons. Low viscosity or high density hydrocarbons or hydrocarbons that contain a larger fraction of highly soluble compounds may need to be tested separately.NOTE 1: No extrapolation outside the range of the tested influent or effluent oil concentrations is allowed as performance may not be linear. Hence, to establish performance at a higher or lower concentration, the separator shall be tested for that specific condition. In addition, linearity must be established prior to using linear interpolation.1.9 Since regulations are based on effluent total hydrocarbon content, this practice does not set forth any lower limits on oil particle size for the evaluation of separator efficiency. However, a standardized means for mixing oil and water shall be specified to ensure repeatability. It must be noted however that smaller particles, having a greater surface area to volume ratio, rise at a slower rate than their larger counterparts. (Guide F933 requires that 20 % of all oil particles be smaller than or equal to 50 μm and IMO MEPC 60 (30) does not mention any particle size requirements but asks the user to avoid emulsion causing chemicals.)1.10 Although the tests described in this practice intend to simulate contaminated storm water run-off separation requirements, they do not cover all possible applications. It is the end user's responsibility to determine whether his separation requirements are within the scope of this practice.1.11 A product different from the general description herein may be tested and found to be in compliance with the performance criteria set forth.1.12 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.13 This practice does not purport to address all the environmental hazards, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate environmentally responsible practices and to determine the applicability of regulatory limitations prior to use.1.14 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.15 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

定价: 515 加购物车

在线阅读 收 藏
521 条记录,每页 15 条,当前第 7 / 35 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页