微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The mechanical properties evaluated by this test method provide the following:5.1.1 Data for use in developing modification factors for the allowable design properties of fire-retardant treated lumber when used at or near room temperatures (see 6.3).5.1.2 Data for use in developing modification factors for allowable design properties of fire-retardant treated lumber when exposed to elevated temperatures and humidity (see 6.4).5.1.3 Data (optional) for use in modifying these factors for size effects when fire-retardant treated lumber is used at or near room temperature and when exposed to elevated temperatures and humidity (see 6.5).5.2 Data from the first two procedures in this test method of evaluation are indicative only for that species.NOTE 1: The results of the three listed species (Southern pine, Douglas fir, and either white spruce or a Spruce/Fir mixture) are allowed to be used together to make inference on untested wood species because the three tested species represent the full spectrum of expected treatability.5.3 Data from the optional third part of this three-part method of evaluation are indicative for all species because it is primarily used to assess size effects.1.1 This test method covers procedures for obtaining data to assess the initial adjustments to allowable design stresses for lumber treated with candidate commercial fire-retardant (FR) formulations and further procedures for obtaining data to assess the effect of extended exposure to elevated temperature of 66 ± 2°C (150 ± 4°F).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

2.1 Weight loss represents the amount of combustibles and volatiles of the material at various temperatures between 315°C (600°F) and 815°C (1499°F). This procedure should not be used to determine percent of binder content.1.1 This test method covers the determination of gasket material weight loss upon exposure to elevated temperatures.1.2 This test method may include hazardous materials, operations, and equipment.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites are candidate materials for structural applications requiring high degrees of wear and corrosion resistance and toughness at high temperatures.4.3 Creep tests measure the time-dependent deformation of a material under constant load at a given temperature. Creep rupture tests provide a measure of the life of the material when subjected to constant mechanical loading at elevated temperatures. In selecting materials and designing parts for service at elevated temperatures, the type of test data used will depend on the criteria for load-carrying capability which best defines the service usefulness of the material.4.4 Creep and creep rupture tests provide information on the time-dependent deformation and on the time-of-failure of materials subjected to uniaxial tensile stresses at elevated temperatures. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) which may be influenced by test mode, test rate, processing or alloying effects, environmental influences, or elevated temperatures. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth. It is noted that ceramic materials typically creep more rapidly in tension than in compression. Therefore, creep data for design and life prediction should be obtained in both tension and compression.4.5 The results of tensile creep and tensile creep rupture tests of specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the creep deformation and creep rupture properties of the entire, full-size end product or its in-service behavior in different environments or at various elevated temperatures.4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.1.1 This test method covers the determination of the time-dependent deformation and time-to-rupture of continuous fiber-reinforced ceramic composites under constant tensile loading at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries. In addition, test specimen fabrication methods, allowable bending, temperature measurements, temperature control, data collection, and reporting procedures are addressed.1.2 This test method is intended primarily for use with all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1-D), bidirectional (2-D), and tridirectional (3-D). In addition, this test method may also be used with glass matrix composites with 1-D, 2-D, and 3-D continuous fiber reinforcement. This test method does not address directly discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Hazard statements are noted in 7.1 and 7.2.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
48 条记录,每页 15 条,当前第 4 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页