微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

1.1 This test method covers the determination of the solubility of pentachlorophenol wood preservative in heavy hydrocarbon solvent. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The presence and concentration of total petroleum hydrocarbons, as well as total oil and grease, in domestic and industrial wastewater is of concern to the public because of its deleterious aesthetic effect and its impact on aquatic life.5.2 Regulations and standards have been established that require monitoring of total petroleum hydrocarbons as well as total oil and grease in water and wastewater.1.1 This test method covers the determination of total oil and grease (TOG) that can be extracted from water or wastewater samples by cyclohexane and measured by non-dispersive IR spectroscopy from 1370–1380 cm-1. Treating the extract with Florisil2 to remove polar substances prior to the IR measurement enables determination of the total petroleum (TPH).1.2 This method also considers the volatile fraction of petroleum hydrocarbons which is lost by gravimetric methods that require solvent evaporation prior to weighing, as well as by solventless IR methods that require drying of the employed solid phase material prior to measurement. Similarly, a more complete fraction of extracted petroleum hydrocarbon is accessible by this method as compared to GC methods that use a time window for quantification, as petroleum hydrocarbons eluting outside these windows are also quantified.1.3 This method defines total oil and grease in water as material that can be extracted with cyclohexane and measured by IR absorption in the region of 1370–1380 cm-1 (7.25–7.3 µm). Similarly, total petroleum hydrocarbon in water is defined as material that can be extracted with cyclohexane, remains in the extract after filtration over Florisil and is measured by IR absorption in the region of 1370–1380 cm-1 (7.25–7.3 µm). The concentration of total grease is defined as the difference between the total oil and grease and total petroleum hydrocarbon concentrations.1.4 This method covers the range of 0.5 to 1000 mg/L for total oil and grease as well as for total petroleum hydrocarbons and has a method detection limit (MDL) of 0.5 mg/L. The range and method detection limit may be extended to higher or lower concentrations by adjusting the water or solvent volume used in the liquid-liquid extraction.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Blends of fuel ethanol and hydrocarbon have a limited solvency for water that is dependent upon temperature and the ratio of ethanol to hydrocarbon. Good handling practices are important during the blending, storage, and transportation of fuel to avoid water contamination. High concentrations of water can cause haze or phase separation in ethanol and hydrocarbon blends and lead to freezing problems at low temperatures. Water has also been associated with corrosion and filter plugging.1.1 This test method covers the determination of water in blends of ethanol, hydrocarbon, and corresponding blends. It is intended for measuring water content of gasoline or other hydrocarbon blendstock, denatured fuel ethanol as cited in Specification D4806, and ethanol fuel blends such as those cited in Specification D5798 and Practice D7794. This test method is not applicable to samples that are phase separated.1.1.1 Procedure A—For measurement of water from 0.004 % by mass to 1.63 % by mass in ethanol and hydrocarbon using coulometric Karl Fischer titration. This is the referee method for samples containing up to 1.63 % water.1.1.2 Procedure B—For measurement of water from 0.02 % by mass to 5.41 % by mass in ethanol and hydrocarbon using volumetric Karl Fischer titration.1.2 This method measures mass percent water and allows for the alternative reporting of volume percent. This test method recommends the use of pyridine-free reagents.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Low operating temperature fuel cells such as proton exchange membrane fuel cells (PEM-FC) require high purity hydrogen for maximum material performance and lifetime. Analysis to 0.1 part per million (ppm(v)) concentration of THCs (measured as CH4) in hydrogen is necessary for ensuring a feed gas of sufficient purity to satisfy fuel cell system needs as defined in SAE J2719 or as specified in regulatory codes.5.2 Dynamic dilution techniques using highly accurate mass flow controllers can be used with test samples that have THC content exceeding the upper limit of the instrument’s linear range, without the need to recalibrate the instrument using higher levels of calibration standards. The sample can be diluted with a high purity grade of hydrogen (99.999 %, so long as it contains < 0.1 ppm(v) THCs) to achieve a result of the THC content by applying the appropriate dilution factor to the result. Samples that contain THC concentrations greater than 1000 ppm(v) may be determined, although results will likey be achieved with reduced precision and should be analyzed by the dilution method.5.3 Although not intended for application to gases other than hydrogen, techniques within this test method can be applied to other non-hydrocarbon gas samples requiring THC content determination. This can be achieved by using a zero gas and a calibration gas that consist of the same background gas as the actual sample. As an example, for the THC determination of nitrogen, the instrument zero point must be determined with a high purity grade of nitrogen (99.999 % and < 0.1 ppm(v) THCs) and the instrument calibration must be done with a certified standard of CH4 in nitrogen in the appropriate range. This will correct for any interferences caused by the background gas.1.1 This test method describes a procedure for total hydrocarbons (THC’s) measurement in hydrogen intended as a fuel on a methane (C1) basis. The determination of THC on a C1 basis is an analytical technique where all the hydrocarbons are assumed to have the same response as methane (CH4). Sensitivity from 0.1 parts per million by volume (ppm(v), µmol/mol) up to 1000 ppm(v) concentration is achievable. Higher concentrations can be analyzed using appropriate dilution techniques. This test method can be applied to other gaseous samples requiring analysis of trace constituents provided an assessment of potential interferences has been accomplished.1.2 This test method is a Flame Ionization Detector-based (FID-based) hydrocarbon analysis method without the use of separation columns. Therefore, this method does not provide speciation of individual hydrocarbons. Several varieties of instruments are manufactured and can be used for this method.1.2.1 This method provides a measure of THC “as CH4,” because all hydrocarbon species are quantified the same as CH4 response, which is the sole species used for calibration. Magnitude of the FID response to an atom of carbon is dependent on the chemical environment of this atom in the molecule. This method provides the THC result as if all carbon atoms are from aliphatic, aromatic, olefinic, or acetylenic compounds, where the detector response caused by these atoms is approximately relative to the number of carbon atoms present in the molecule. Other types of molecules, including those containing oxygen or chlorine atoms, will respond differently and usually much lower than the corresponding aliphatic hydrocarbon. Therefore, other methods (Test Methods D7653, D7892, or equivalent) must be utilized to determine the exact constituents of the THC response determined by this method.1.3 The proper handling of compressed gas cylinders containing air, nitrogen, hydrogen, or helium requires the use of gas regulators to preclude over-pressurization of any instrument component1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The aromatic hydrocarbon content of motor diesel fuel is a factor that can affect exhaust emissions and fuel combustion characteristics, as measured by cetane number.5.2 The United States Environmental Protection Agency (US EPA) regulates the aromatic content of diesel fuels. California Air Resources Board (CARB) regulations place limits on the total aromatics content and polynuclear aromatic hydrocarbon content of motor diesel fuel, thus requiring an appropriate analytical determination to ensure compliance with the regulations.5.3 This test method is applicable to materials in the same boiling range as motor diesel fuels and is unaffected by fuel coloration. Test Method D1319, which has been mandated by the US EPA for the determination of aromatics in motor diesel fuel, excludes materials with final boiling points greater than 315 °C (600 °F) from its scope. Test Method D2425 is applicable to the determination of both total aromatics and polynuclear aromatic hydrocarbons in diesel fuel, but is much more costly and time consuming to perform. Test Method D5186, currently specified by CARB, is also applicable to the determination of both total aromatics and polynuclear aromatic hydrocarbons in diesel fuel. Test Method D5186, however, specifies the use of supercritical fluid chromatography equipment that may not be readily available.NOTE 2: Test Method D5186 was previously specified by CARB as an alternative to Test Method D1319.1.1 This test method covers a high performance liquid chromatographic test method for the determination of mono-aromatic, di-aromatic, tri+-aromatic, and polycyclic aromatic hydrocarbon contents in diesel fuels and petroleum distillates boiling in the range from 150 °C to 400 °C. The total aromatic content in % m/m is calculated from the sum of the corresponding individual aromatic hydrocarbon types.NOTE 1: Aviation fuels and petroleum distillates with a boiling point range from 50 °C to 300 °C are not determined by this test method and should be analyzed by Test Method D6379 or other suitable equivalent test methods.1.2 The precision of this test method has been established for diesel fuels and their blending components, containing from 4 % to 40 % (m/m) mono-aromatic hydrocarbons, 0 % to 20 % (m/m) di-aromatic hydrocarbons, 0 % to 6 % (m/m) tri+-aromatic hydrocarbons, 0 % to 26 % (m/m) polycyclic aromatic hydrocarbons, and 4 % to 65 % (m/m) total aromatic hydrocarbons.1.3 Compounds containing sulfur, nitrogen, and oxygen are possible interferents. Mono-alkenes do not interfere, but conjugated di- and poly-alkenes, if present, are possible interferents.1.4 By convention, this standard defines the aromatic hydrocarbon types on the basis of their elution characteristics from the specified liquid chromatography column relative to model aromatic compounds. Quantification is by external calibration using a single aromatic compound, which may or may not be representative of the aromatics in the sample, for each aromatic hydrocarbon type. Alternative techniques and methods may classify and quantify individual aromatic hydrocarbon types differently.1.5 Fatty Acid Methyl Esters (FAME), if present, interfere with tri+-aromatic hydrocarbons. If this method is used for diesel containing FAME, the amount of tri+-aromatics will be over estimated.1.6 This test method includes a Relative Bias section for Test Method D6591 versus Test Method D1319 and Test Method D5186 versus Test Method D6591 for diesel fuels only. The applicable concentration ranges of the correlations are presented in the Relative Bias section. The correlations are applicable only in the stated ranges.1.7 This test method and correlations were developed for diesel samples not containing biodiesel; the presence of biodiesel will interfere with the results. The correlation equations are only applicable between these concentration ranges and to diesel fuels that do not contain biodiesel.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Ampulization is desirable in order to minimize variability and maximize the integrity of calibration standards or RMs, or both, being used in calibration of analytical instruments and in validation of analytical test methods in round-robin or interlaboratory cross-check programs. This practice is intended to be used when the highest degree of confidence in integrity of a material is desired.5.2 This practice is intended to be used when it is desirable to maintain the long term storage of gasoline and related liquid hydrocarbon RMs, controls, or calibration standards for retain or repository purposes.5.3 This practice may not be applicable to materials that contain high percentages of dissolved gases, or to highly viscous materials, due to the difficulty involved in transferring such materials without encountering losses of components or ensuring sample homogeneity.1.1 This practice covers a general guide for the ampulization and storage of gasoline and related hydrocarbon mixtures that are to be used as calibration standards or reference materials. This practice addresses materials, solutions, or mixtures, which may contain volatile components. This practice is not intended to address the ampulization of highly viscous liquids, materials that are solid at room temperature, or materials that have high percentages of dissolved gases that cannot be handled under reasonable cooling temperatures and at normal atmospheric pressure without losses of these volatile components.1.2 This practice is applicable to automated ampule filling and sealing machines as well as to manual ampule filling devices, such as pipettes and hand-operated liquid dispensers.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers formulating requirements for purchases of a UL100 unleaded aviation gasoline test fuel under contract and is intended solely for use by purchasing agencies for testing purposes. It prescribes the required properties of unleaded D7960 fuel at the time and place of delivery. The suitability of this fuel for use on any specific aircraft, aircraft engine, or ground-based fuel handling equipment should be evaluated before use on that equipment.Included in this specification are requirements for the manufacture of D7960 fuel and additives; workmanship, finish, and appearance; sampling; and the type and number of reports to ensure conformance with the requirements of this specification. Products shall conform to the requirements that shall be determined in accordance with ASTM test methods for knock value (lean rating), tetraethyl lead, density, distillation, vapor pressure, freezing point, sulfur, net heat of combustion, corrosion (copper strip), potential gum and visible lead precipitate, water reaction, and electrical conductivity.1.1 This specification covers formulating specifications for purchases of a UL102 unleaded aviation gasoline test fuel under contract and is intended solely for use by purchasing agencies for testing purposes.1.2 This specification defines a specific type of aviation gasoline for use as an aviation spark-ignition engine test fuel. It does not include all gasolines satisfactory for reciprocating aviation engines. Certain equipment or conditions of use may permit a wider, or require a narrower, range of characteristics than is shown by this specification.1.3 The D7960 test fuel defined by this specification may not exhibit identical performance to those leaded fuels with which the existing aircraft and ground-based fuel handling equipment have been designed to operate. Therefore, the suitability of this fuel for use on any specific aircraft, aircraft engine, or ground-based fuel handling equipment should be evaluated before use on that equipment.1.4 Issuance of this specification does not constitute approval to operate certificated aircraft with this fuel. Fuels used in certified engines and aircraft are ultimately approved by the certifying authority subsequent to formal submission of evidence to the authority as part of the certification program for that aircraft and engine model.1.5 This specification, unless otherwise provided, prescribes the required properties of unleaded D7960 test fuel at the time and place of delivery.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Aromatic content is a key characteristic of hydrocarbon oils and can affect a variety of properties of the oil including its boiling range, viscosity, stability, and compatibility of the oil with polymers.5.2 Existing methods for estimating aromatic contents use physical measurements, such as refractive index, density, and number average molecular weight (see Test Method D3238) or infrared absorbance4 and often depend on the availability of suitable standards. These NMR procedures do not require standards of known aromatic hydrogen or aromatic carbon contents and are applicable to a wide range of hydrocarbon oils that are completely soluble in chloroform at ambient temperature.5.3 The aromatic hydrogen and aromatic carbon contents determined by this test method can be used to evaluate changes in aromatic contents of hydrocarbon oils due to changes in processing conditions and to develop processing models in which the aromatic content of the hydrocarbon oil is a key processing indicator.1.1 This test method covers the determination of the aromatic hydrogen content (Procedures A and B) and aromatic carbon content (Procedure C) of hydrocarbon oils using high-resolution nuclear magnetic resonance (NMR) spectrometers. Applicable samples include kerosenes, gas oils, mineral oils, lubricating oils, coal liquids, and other distillates that are completely soluble in chloroform at ambient temperature. For pulse Fourier transform (FT) spectrometers, the detection limit is typically 0.1 mol % aromatic hydrogen atoms and 0.5 mol % aromatic carbon atoms. For continuous wave (CW) spectrometers, which are suitable for measuring aromatic hydrogen contents only, the detection limit is considerably higher and typically 0.5 mol % aromatic hydrogen atoms.1.2 The reported units are mole percent aromatic hydrogen atoms and mole percent aromatic carbon atoms.1.3 This test method is not applicable to samples containing more than 1 mass % olefinic or phenolic compounds.1.4 This test method does not cover the determination of the percentage mass of aromatic compounds in oils since NMR signals from both saturated hydrocarbons and aliphatic substituents on aromatic ring compounds appear in the same chemical shift region. For the determination of mass or volume percent aromatics in hydrocarbon oils, chromatographic, or mass spectrometry methods can be used.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.2 and 7.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Benzene is classed as a toxic and carcinogenic material. A knowledge of the concentration of this compound may be an aid in evaluating the possible health hazards to persons handling and using hydrocarbon solvents, but this test method is not intended to evaluate such hazards.1.1 This test method covers the determination by gas chromatography of benzene at levels from 0.01 to 1 volume % in hydrocarbon solvents.NOTE 1: For benzene levels lower than 0.01 volume %, use Test Method D6229.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 For purposes of determining conformance of an observed or a calculated value using this test method to relevant specifications, test result(s) shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.1.4 For hazard information and guidance, see the supplier's Material Safety Data Sheet. For specific hazard statements, see Section 7.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification establishes the requirements for purchases of Grade UL 91 unleaded aviation gasoline under contract and is intended primarily for use by purchasing agencies. It does not cover any other gasolines satisfactory for reciprocating aviation engines. The unleaded aviation gasoline, except as otherwise specified here, shall consist of blends of refined hydrocarbons derived from crude petroleum, natural gasoline, or blends thereof, with synthetic hydrocarbons or aromatic hydrocarbons, or both. Additives for electrical conductivity and corrosion inhibition, as well as certain types of antioxidants may be added separately, or in combination, in specified compositions and concentrations. Properly sampled specimens shall undergo test procedures and conform, accordingly, to the following requirements: knock value (motor octane number); density; distillation (initial boiling point, fuel evaporated, and final boiling point); recovery, residue and loss volumes; vapor pressure; freezing point; sulfur content; net heat of combustion; corrosion (copper strip); oxidation stability (potential gum); water reaction (volume change); and electrical conductivity.1.1 This specification covers formulating specifications for purchases of aviation gasoline under contract and is intended primarily for use by purchasing agencies.1.2 Unleaded aviation gasoline defined by this specification is for use in engines and associated aircraft that are specifically approved by the engine and aircraft manufacturers. This fuel is not considered suitable for use in other engines and associated aircraft that are certified to use only leaded aviation gasolines of the same octane grade.1.3 This specification, unless otherwise provided, prescribes the required properties of unleaded aviation gasoline at the time and place of delivery.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The presence of trace amounts of hydrogen, oxygen, carbon monoxide, and carbon dioxide can have deleterious effects in certain processes using hydrocarbon products as feed stock. This test method is suitable for setting specifications, for use as an internal quality control tool, and for use in development and research work.1.1 This test method covers the determination of hydrogen, nitrogen, oxygen, methane, carbon monoxide, and carbon dioxide in the parts per billion mole (nmol/mol) to parts per million mole (µmol/mol) range in C2 and C3 hydrocarbons.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For some specific hazard statements, see Annex A1.1.3.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 A knowledge of the hydrocarbon composition of process streams and petroleum products boiling within the range of 160 °C to 343 °C (320 °F to 650 °F) is useful in following the effect of changes in process variables, diagnosing the source of plant upsets, and in evaluating the effect of changes in composition on product performance properties.5.2 A test method to determine total cycloparafins and low level aromatic content is necessary to meet specifications for aviation turbine fuel containing synthesized hydrocarbons.1.1 This test method covers an analytical scheme using the mass spectrometer to determine the hydrocarbon types present in conventional and synthesized hydrocarbons that have a boiling range of 160 °C to 343 °C (320 °F to 650 °F), 5 % to 95 % by volume  as determined by Test Method D86. Samples with average carbon number value of paraffins between C12 and C16 and containing paraffins from C10 and C18 can be analyzed. Eleven hydrocarbon types are determined. These include: paraffins, noncondensed cycloparaffins, condensed dicycloparaffins, condensed tricycloparaffins, alkylbenzenes, indans or tetralins, or both, CnH 2n-10 (indenes, etc.), naphthalenes, CnH2n-14  (acenaphthenes, etc.), CnH 2n-16 (acenaphthylenes, etc.), and tricyclic aromatics.NOTE 1: This test method was developed on Consolidated Electrodynamics Corporation Type 103 Mass Spectrometers. Operating parameters for users with a Quadrupole Mass Spectrometer are provided.1.2 This test method is intended for use with full boiling range products that contain no significant olefin content.Biodiesel (FAME components) could interfere with the separation of the sample and the characteristic mass fragments of FAME compounds are not defined in the procedure.Hydrocarbons containing tertiary carbon fragments, sometimes found in synthetic aviation fuels, will interfere with the characteristic mass fragments of paraffins and result in a false, elevated cycloparaffin content.NOTE 2: “No significant olefin content” for this method means <2.0 % by volume by Test Method D1319.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific warning statement, see 11.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers Grade 82 unleaded aviation gasoline for use only in engines and associated aircraft that are specifically approved by the engine and aircraft manufacturers, and certified by the National Certifying Agencies to use this fuel. Aviation gasoline shall consist of blends of refined hydrocarbons derived from crude petroleum, natural gasoline or blends thereof, with specific aliphatic ethers, synthetic hydrocarbons, or aromatic hydrocarbons, and when applicable, methyl tertiarybutyl ether (MTBE). They may also contain antioxidants (oxidation inhibitors), metal deactivators, corrosion inhibitors, and fuel system icing inhibitors. The gasoline shall be tested and conform accordingly to the following property requirements: lean mixture knock value and motor method octane number; color; blue and red dye content; distillation temperature at % evaporated, end point, and residue content; distillation recovery; distillation loss; net heat of combustion; freezing point; vapor pressure; lead content; copper strip corrosion; sulfur content; potential gum; and alcohols and ether content (aliphatic ethers, methanol, and ethanol).1.1 This specification covers Grades UL82 and UL87 unleaded aviation gasolines, which are defined by this specification and are only for use in engines and associated aircraft that are specifically approved by the engine and aircraft manufacturers, and certified by the National Certifying Agencies to use these fuels. Components containing hetro-atoms (oxygenates) may be present within the limits specified.1.2 A fuel may be certified to meet this specification by a producer as Grade UL82 or UL87 aviation gasoline only if blended from component(s) approved for use in these grades of aviation gasoline by the refiner(s) of such components, because only the refiner(s) can attest to the component source and processing, absence of contamination, and the additives used and their concentrations. Consequently, reclassifying of any other product to Grade UL82 or Grade UL87 aviation gasoline does not meet this specification.1.3 Appendix X1 contains an explanation for the rationale of the specification. Appendix X2 details the reasons for the individual specification requirements.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method can be used to determine total sulfur levels in process feeds and finished products that fall within the scope of this test method.4.2 Low levels of sulfur in process feed stocks can poison expensive catalysts used in petroleum refining processes. This test method can be used to monitor sulfur levels in these feedstocks.1.1 This test method covers the determination of total sulfur in liquid hydrocarbons with a final boiling point less than 450 °C by gas chromatography using a flame photometric detector.1.2 This test method is applicable for total sulfur levels from 0.5 mg/kg S to 100 mg/kg S.NOTE 1: The pooled limit of quantification (PLOQ) derived from the 2002 interlaboratory cooperative test program was determined to be 1 mg/kg S.NOTE 2: Samples can also be tested at other total sulfur levels, but the precision statements may not apply.1.3 The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides accurate biobased/biogenic carbon content results to materials whose carbon source was directly in equilibrium with CO2 in the atmosphere at the time of cessation of respiration or metabolism, such as the harvesting of a crop or grass living in a field. Special considerations are needed to apply the testing method to materials originating from within artificial environments with non-natural levels of 14C or if the biofeed was grown over the course of several years such as trees and contains “bomb-carbon.” Application of these test methods to materials derived from CO2 uptake within artificial environments is beyond the present scope of this standard.5.2 This method uses LSC techniques to quantify the biobased content of a liquid hydrocarbon fuels using sample carbon that has been unmodified. It is designed to be able to incorporate into a refinery laboratory to support biofeed and petroleum coprocessing or blending operations to determine the biocarbon content of the intermediate or finished products. The test results can then be used for optimizing internal parameters or reporting to regulatory agencies.5.3 The use of this method requires that a pure petroleum-based sample can be generated that has a similar matrix to each product or stream to be analyzed. For example, gasoline and diesel have very different matrices and will likely require the use of different background measurements for each. Refer to 10.2 for how to determine if the same background sample can be used for more than one product/stream.1.1 This test method covers quantitatively determining biocarbon content of liquid hydrocarbon fuels with a focus on those produced in a typical petroleum refinery using liquid scintillation counting (LSC). The method is designed to generate analogous results as Test Method D6866 Method C, for low quench samples, without the need of benzene synthesis. The purpose is to be able to use the produced data to report biocarbon content of refinery products to regulatory agencies and monitor refinery operation. The method does not address regulatory reporting or fuel performance.1.2 The method is needed to support refinery operations when bio-feeds are co-processed with petroleum within a reactor with a focus on samples with 100 % biocarbon or less (not for 14C labeled species). It allows refineries to report the biocarbon content of refinery products to regulatory agencies such as the Environmental Protection Agency (EPA) or California Air Resources Board (CARB) to comply with regulatory statutes such as The Renewable Fuel Standard (RFS) or Low Carbon Fuel Standard (LCFS).1.3 This test method is applicable to any liquid fuel product, petroleum based (pure hydrocarbon), biobased (such as renewable diesel or those that can contain oxygenates such as ethanol), or blends, that contain 1 % to 100 % by mass biocarbon where an instrument background can be experimentally determined using a sample of similar matrix that contains no measurable carbon-14.1.4 This test method makes no attempt to teach the basic principles of the instrumentation used although minimum requirements for instrument selection are referenced in Refs (1-11).2 However, the preparation of samples for the above test methods is described. No details of instrument operation are included here. These are best obtained from the manufacturer of the specific instrument in use.1.5 Pre-Requisite Requirements For Method Execution—This test method uses artificial carbon-14 (14C) within the method. Great care shall be taken to prevent laboratory contamination of the elevated 14C. Once in the laboratory, artificial 14C can contaminate a variety of laboratory surfaces that can lead to artificially high sample biocarbon measurements. If vigorous cleaning attempts to remove the artificial 14C from a laboratory are unsuccessful, instrumentation and sample preparation may have to be moved to a new laboratory away from the contamination or the laboratory may have to rely on outside third-party labs for analysis. Specific procedural steps have been incorporated into this method that minimize the risk of sample and lab contamination. Wipe tests and quality assurance samples can validate absence of contamination. In the event of contamination in the laboratory or instrument, vigorous cleaning protocols shall be implemented, and analysis cannot be resumed until the lab and instrument are free of contamination. Accepted requirements are:1.5.1 Working with the elevated 14C samples in a separate and defined area away from the instrument and the preparation of any non-spiked samples.1.5.2 Using separate personnel to prepare the spiked samples and non-spiked samples.1.5.3 Using separate laboratory spaces with separate HVAC systems for the handling of spiked and non-spiked samples. The use of separate fume hoods that have separate exhaust ventilation satisfies this requirement.1.5.4 Weekly wipe tests of 14C sample handling area(s) to detect lab contamination.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
81 条记录,每页 15 条,当前第 2 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页