微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers lime putty products made from hydrated lime or quicklime products. Lime putty is suitable for use in masonry, plaster and stucco applications. The hydrated lime or quicklime products used to make lime putty shall be tested and shall conform to the chemical composition, plasticity, residue, soaking period, popping and pitting, and density requirements specified.1.1 This specification covers lime putty products made from hydrated lime or quicklime products. Lime putty is suitable for use in masonry, plaster and stucco applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification describes copper-silicon alloy plate, sheet, strip and rolled bar commonly used for drawing, forming, stamping and bending. The alloys included are C65100, C65400, C65500 and C65800. 1.2 Material ordered for ASME Boiler and Pressure Vessel Code applications, shall be in the annealed temper of alloy C65500. Note 1-Refer to Practice E527 for a description of the Unified Numbering System (UNS). Note 2-This specification is the metric companion of Specification B96.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Eddy current instrumentation provides timely and useful information regarding the acceptability of copper and aluminum rod for quality control purposes, as well as providing for early warning that unacceptable rod is being produced. Eddy current testing is a nondestructive method of locating surface discontinuities in a product. Signals can be produced by discontinuities located on the surface of the rod. Since the density of eddy currents decreases nearly exponentially as the distance from the surface increases, deep-seated defects may be undetected.5.1.1 An exception is the detection of subsurface ferromagnetic inclusions with an additional, or shared, winding enveloped in a DC magnetic field and the addition of appropriate instrumentation. The coil winding, acting as a transducer, generates a voltage as the magnetized inclusion passes through, providing an electrical signal separate from the eddy current response to surface imperfections. The rod is transparent to the DC effect allowing high sensitivity to ferromagnetic inclusions, in the absence of eddy current noise. The method is inherently speed sensitive but is enhanced by high throughput speeds enabling the detection of small subsurface ferromagnetic inclusions which are particularly detrimental to rod quality.5.2 Some indications obtained by this practice may not be relevant to product quality. For example, a signal may be caused by minute flaws or irregularities, by anomalies in the material, or a combination thereof, that are not detrimental to the end use of the product. Nonrelevant indications, referred to as “noise,” can mask unacceptable discontinuities. On the other hand, relevant indications are those that may result from unacceptable discontinuities and should be determined by agreement between the user and the supplier. Any indication that is believed to be irrelevant shall be regarded as unacceptable until it is demonstrated by reexamination or other means to be nonrelevant.1.1 This practice covers the procedures that shall be followed in electromagnetic (eddy current) examination of copper and aluminum redraw rods for detecting discontinuities or imperfections of a severity likely to cause failure or markedly impair surface quality of the rod. These procedures are applicable for continuous lengths of redraw rod in diameters from 1/4 to 13/8 in. (6.4 to 35 mm) suitable for further fabrication into electrical conductors.1.2 This practice covers redraw rod made from tough-pitch or oxygen-free coppers. It can also be used for other types of copper, such as fire-refined high conductivity rod. It is also appropriate for aluminum and other nonferrous alloys used for electrical purposes.1.3 The procedures described in this practice are based on methods for making use of differential or absolute stationary encircling annular test coil systems.1.4 This practice does not establish acceptance criteria. Acceptance criteria must be established by the using parties.1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 When physically evaluating a soil, relative to its suitability to support plant growth (primarily grasses), tests must be performed to determine the presence and amount of solid matter (organic and inorganic) compatibility that can determine potential air-void content and water-holding ability, and finally, deleterious materials.4.2 Typical general ranges of soil content for suitable topsoils are presented in Specification D5268. It should be recognized, however, that in some geographic regions, concurrence with the values in the referenced table would be difficult. In such situations, locally acceptable specifications need to be developed.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/ and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This guide covers the material characteristics, physical requirements, and sampling appropriate for the designation of the rotary kiln produced expanded shale, clay or slate (ESCS) material as a mineral amendment.1.2 The presence in the topsoil of the proper nutrient and pH level is necessary for healthy plant growth. This guide does not, however, cover a determination of the nutrients, nor their availability.2NOTE 1: The nutrient content of topsoil is important and the chemicals usually evaluated are nitrogen, phosphate, and potassium. Nutrient deficiencies may be corrected by using fertilizers. Excess soluble salts should be examined as to their desirability. The acidity or alkalinity of the soil is also important. Excess acidity may be corrected by the application of lime dust. Excess alkalinity may be corrected by the application of sulfur or other suitable acidifying compounds. The latter item, in addition to lowering pH, also could be considered as an aggregate when considering the particle size distribution.1.3 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM B49-20 Standard Specification for Copper Rod for Electrical Purposes Active 发布日期 :  1970-01-01 实施日期 : 

This specification covers the requirements for rod drawing stock produced from electrolytic tough-pitch or oxygen-free coppers and is suitable for further fabrication into electrical conductors. The rod shall be fabricated from copper of such quality and purity. Copper of special qualities, forms, or types, as agreed upon between the manufacturer and the purchaser and that will conform to the requirements prescribed in this specification may also be used. The specimen shall have the following chemical composition: tellurium, selenium, bismuth, antimony, arsenic, tin, lead, iron, nickel, sulfur, silver, oxygen, cadmium, phosphorus, zinc, and manganese. Embrittlement test shall be performed on the specimen to reflect propensity towards hydrogen embrittlement and shall be performed only on oxygen-free copper. The rod shall be free of defects, but blemishes of a nature that do not interfere with the intended application are acceptable.1.1 This specification covers the requirements for rod in diameters from 1/4 in. to 13/8 in. (6.4 mm to 35 mm) produced from high conductivity coppers listed in Table 1, namely, electrolytic tough-pitch, oxygen-free, or fire-refined high conductivity coppers, and are suitable for further fabrication into electrical conductors.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazards caveat pertains only to Section 13. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is applicable to the separation of specific radionuclides of interest as part of overall radiochemical analytical methods. Radionuclides of interest may need to be quantified at activity levels of less than 1 Bq. This may require measurement of less than 1 fg of analyte in a sample which has a mass of a gram to more than several kilograms. This requires concentration of radionuclides into a smaller volume counting geometry or exclusion of species which would impede subsequent chemical separations, or both. MnO2 has shown good selectivity in being able to concentrate the following elements: actinium (Ac), bismuth (Bi), lead (Pb), polonium (Po), plutonium (Pu), radium (Ra), thorium (Th), and uranium (U) as noted in the referenced literature (see Sections 4 and 8). The MnO2 can be loaded onto a variety of substrates in preparation for use or generated in-situ in an aqueous solution. The presented processes are not meant to be all encompassing of what is possible or meant to address all limitations of using MnO2. Some limitations are noted in Section 6, Interferences.1.1 This practice is intended to provide a variety of approaches in which manganese oxide (MnO2) can be used to concentrate radionuclides of interest into a smaller volume counting geometry or exclude other species that would otherwise impede subsequent chemical separation steps in an overall radiochemical method, or both.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Sample probes shall be used to extract liquid or steam from the main part of the geothermal flow rather than using a wall-accessing valve and pipe arrangement. Sampling lines shall be as short as practical and of sufficient strength to prevent structural failure. Valves which control access to the sampling point shall have straight throats. The tube through which the sample flows shall be continuous through the cooling location so there will be no possibility of sample contamination or dilution from the cooling water. Liquid sample containers and compatible closures shall not bias the sample components of interest. Devices used to collect and transport the gas component of the samples shall be resistant to chemical reactions and to gaseous diffusion or adsorption. Filters, when used, shall be housed in a pressure-tight container assuring that the full flow passes through the filter. The sampling apparatus shall be kept clean.1.1 This specification covers the basic requirements for equipment and the techniques to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers the standard for carbon steel, alloy steel, and martensitic stainless steel castings that are to be subjected to higher mechanical stresses. All castings shall undergo heat treatment either by full annealing, normalizing, normalizing and tempering, or quenching and tempering and shall be regulated under pyrometers. Several grades of steel castings are covered and shall conform to the required chemical composition for sulfur and phosphorus. A tension test shall be performed and shall conform to the required tensile strength, yield point, and elongation. The notch bar impact properties shall also be determined by testing one set of three Charpy V-notch impact specimens. 1.1 This specification covers carbon steel, alloy steel, and martensitic stainless steel castings that are to be subjected to higher mechanical stresses than those covered in Specification A27/A27M. 1.2 Several grades of steel castings are covered, having the chemical composition and mechanical properties prescribed in Tables 1 and 2. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. 1.3.1 Within the text, the SI units are shown in brackets. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This specification covers aluminum-alloy 5005 Drawing stock, 0.375 in. (9.52 mm) in diameter, in the tempers shown in Table 1, for drawing into wire for electrical conductors (Explanatory Notes 1 and 2). 1.2 The SI values for density and resistivity are regarded as the standard. For all other properties the inch-pound values are to be regarded as standard and the SI units may be approximate. Note 1-The alloy and temper designations conform to ANSI H35.1. Aluminum-alloy 5005 corresponds to unified numbering system alloy A95005 in accordance with Practice E527.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the standard general requirements for lead-coated and lead-alloy-coated, round, soft or annealed copper wire for electrical purposes. The base metal shall be made of copper while the coating material shall be a commercially pure lead or a lead alloy which consists of lead, tin, and antimony elements. Ammonium persulfate test or sodium polysulfide-hydrochloric acid test shall be employed to determine the continuity of the coatings. The wire shall undergo dimensional measurements using a micrometer caliper with a vernier, as well as tension and resistivity tests. The specimen shall conform to the required tensile strength, elongation, and electrical resistivity specifications.1.1 This specification covers lead-coated and lead-alloy-coated, round, soft or annealed copper wire for electrical purposes.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. The SI values for density and resistivity are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. The hazard statement applies only to Section 6 of this specification.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers 800 series aluminum alloys fabricated into round wires in annealed or intermediate tempers suitable for stranding into conductors or for solid single conductors, usually to be insulated. The wire shall be made from drawing stock meeting the chemical composition limits for aluminum, silicon, iron, copper, magnesium, zinc, and boron. The wire shall be free of imperfections and shall conform to specified values for tensile strength, elongation, and electrical resistivity. The specified values for the density of aluminum alloys and wire diameter, shall be taken for the calculation of mass and cross sections. Joints may be made in drawing stock and in the wire prior to final drawing, or during final drawing or in the finished wire by electrical-butt welding, cold-pressure welding, or by electric-butt, cold-upset welding. Details for each kind of test and measurement method (tensile strength test, resistivity measurement, diameter measurement, surface-finish inspection) are discussed thoroughly.1.1 This specification covers 8000 series aluminum alloys fabricated into round wires in annealed or intermediate tempers suitable for stranding into conductors or for solid single conductors, usually to be insulated.1.2 The SI values for resistivity are regarded as standard. For all other properties, the inch-pound units are regarded as standard and the SI units may be approximate.NOTE 1: Aluminum alloys capable of meeting the requirements of this specification are listed in Table 1.NOTE 2: The alloy and temper designations conform to ANSI H35.1. Unified Numbering System alloy designations are listed in Table 1 in accordance with Practice E527.NOTE 3: Certain aluminum alloys may be subject to patent rights. U.S. patents numbers are shown in Table 1.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the standard requirements for aluminum 1350-H19, extra hard, round wire for electrical purposes. The aluminum wire shall be made from drawing stock and shall be free of brittleness as evidenced by its ability to be coiled or looped around its own diameter with or without a mandrel. Joints may also be made during the final drawing or in the finished wire by electric-butt welding, cold-pressure welding, or electric-butt, cold-upset welding. Tension tests shall be performed; wherein, the wire shall conform to the tensile strength, elongation, and bending specifications. The specimen shall also conform to the electrical resistivity requirements.1.1 This specification covers aluminum 1350–H19 (extra hard) round wire for electrical purposes.1.2 The values stated in inch-pound or SI units are to be regarded separately as standard. The values in each system are not exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.2.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.NOTE 1: Prior to 1975 aluminum 1350 was designated EC aluminum.NOTE 2: The aluminum and temper designations conform to ANSI H35.1/H35.1M. Aluminum 1350 corresponds to UNS A91350 in accordance with Practice E527.NOTE 3: For definitions of terms found in this specification relating to uninsulated electrical conductors see Terminology B354.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Thin-walled tube samples are used for obtaining intact specimens of fine-grained soils for laboratory tests to determine engineering properties of soils (strength, compressibility, permeability, and density). Fig. 2 shows the use of the sampler in a drill hole. Typical sizes of thin-walled tubes are shown on Table 1. The most commonly used tube is the 3-in. [75 mm] diameter. This tube can provide intact samples for most laboratory tests; however some tests may require larger diameter tubes. Tubes with a diameter of 2 in. [50 mm] are rarely used as they often do not provide specimens of sufficient size for most laboratory testing.1.5(A) The three diameters recommended in Table 2 are indicated for purposes of standardization, and are not intended to indicate that sampling tubes of intermediate or larger diameters are not acceptable. Lengths of tubes shown are illustrative. Proper lengths to be determined as suited to field conditions. Wall thickness may be changed (5.2.1, 6.3.2). Bwg is Birmingham Wire Gauge (Specification A513/A513M).5.1.1 Soil samples must undergo some degree of disturbance because the process of subsurface soil sampling subjects the soil to irreversible changes in stresses during sampling, extrusion if performed, and upon removal of confining stresses. However, if this practice is used properly, soil samples suitable for laboratory testing can be procured. Soil samples inside the tubes can be readily evaluated for disturbance or other features such as presence of fissures, inclusions, layering or voids using X-ray radiography (D4452) if facilities are available. Field extrusion and inspection of the soil core can also help evaluate sample quality.5.1.2 Experience and research has shown that larger diameter samples (5 in. [125 mm]) result in reduced disturbance and provide larger soil cores available for testing. Agencies such as the U.S Army Corps of Engineers and US Bureau of Reclamation use 5-in. [125-mm] diameter samplers on large exploration projects to acquire high quality samples (1, 2, 3).35.1.3 The lengths of the thin-walled tubes (tubes) typically range from 2 to 5 ft [0.5 to 1.5 m], but most are about 3 ft [1 m]. While the sample and push lengths are shorter than the tube, see 7.4.1.5.1.4 This type of sampler is often referred to as a “Shelby Tube.”5.2 Thin-walled tubes used are of variable wall thickness (gauge), which determines the Area Ratio (Ar). The outside cutting edge of the end of the tube is machined-sharpened to a cutting angle (Fig. 1). The tubes are also usually supplied with a machine-beveled inside cutting edge which provides the Clearance Ratio (Cr). The recommended combinations of Ar, cutting angle, and Cr are given below (also see 6.3 and Appendix X1, which provides guidance on sample disturbance).5.2.1 Ar should generally be less than 10 to 15 %. Larger Ar of up to 25 to 30 % have been used for stiffer soils to prevent buckling of the tube. Tubes of thicker gauge may be requested when re-use is anticipated (see 6.3.2).5.2.2 The cutting edge angle should range from 5 to 15 degrees. Softer formations may require sharper cutting angles of 5 to 10 degrees, however, sharp angles may be easily damaged in deeper borings. Cutting edge angles of up to 20 to 30 degrees have been used in stiffer formations in order to avoid damage to the cutting edges.5.2.3 Optimum Cr depends on the soils to be tested. Soft clays require Cr of 0 or less than 0.5 %, while stiffer formations require larger Cr of 1 to 1.5 %.5.2.3.1 Typically, manufacturers supply thin-walled tubes with Cr of about 0.5 to 1.0 % unless otherwise specified. For softer or harder soils Cr tubes may require special order from the supplier.5.3 The most frequent use of thin-walled tube samples is the determination of the shear strength and compressibility of soft to medium consistency fine-grained soils for engineering purposes from laboratory testing. For determination of undrained strength, unconfined compression or unconsolided, undrained triaxial compression tests are often used (Test Methods D2166 and D2850). Unconfined compression tests should be only used with caution or based on experience because they often provide unreliable measure of undrained strength, especially in fissured clays. Unconsolidated undrained tests are more reliable but can still suffer from disturbance problems. Advanced tests, such as consolidated, undrained triaxial compression (Test Method D4767) testing, coupled with one dimensional consolidation tests (Test Methods D2435 and D4186) are performed for better understanding the relationship between stress history and the strength and compression characteristics of the soil as described by Ladd and Degroot, 2004 (4).5.3.1 Another frequent use of the sample is to determine consolidation/compression behavior of soft, fine-grained soils using One-Dimensional Consolidation Test Methods D2435 or D4186 for settlement evaluation. Consolidation test specimens are generally larger diameter than those for strength testing and larger diameter soil cores may be required. Disturbance will result in errors in accurate determination of both yield stress (5.3) and stress history in the soil. Disturbance and sample quality can be evaluated by looking at recompression strains in the One-Dimensional Consolidation test (see Andressen and Kolstad (5)).5.4 Many other sampling systems use thin-walled tubes. The piston sampler (Practice D6519) uses a thin-walled tube. However, the piston samplers are designed to recover soft soils and low-plasticity soils and the thin-walled tubes used must be of lower Cr of 0.0 to 0.5 %. Other piston samplers, such as the Japanese and Norwegian samplers, use thin-walled tubes with 0 % Cr (see Appendix X1).5.4.1 Some rotary soil core barrels (Practice D6169-Pitcher Barrel), used for stiff to hard clays use thin-walled tubes. These samplers use high Cr tubes of 1.0 to 1.5 % because of core expansion and friction.5.4.2 This standard may not address other composite double-tube samplers with inner liners. The double-tube samplers are thicker walled and require special considerations for an outside cutting shoe and not the inner thin-walled liner tube.5.4.3 There are some variations to the design of the thin-walled sampler shown on Fig. 2. Figure 2 shows the standard sampler with a ball check valve in the head, which is used in fluid rotary drilled holes. One variation is a Bishop-type thin-walled sampler that is capable of holding a vacuum on the sampler to improve recovery (1, 2). This design was used to recover sand samples that tend to run out of the tube with sampler withdraw.5.5 The thin-walled tube sampler can be used to sample soft to medium stiff clays4. Very stiff clays4 generally require use of rotary soil core barrels (Practice D6151, Guide D6169). Mixed soils with sands can be sampled but the presence of coarse sands and gravels may cause soil core disturbance and tube damage. Low-plasticity silts can be sampled but in some cases below the water table they may not be held in the tube and a piston sampler may be required to recover these soils. Sands are much more difficult to penetrate and may require use of smaller diameter tubes. Gravelly soils cannot be sampled and gravel will damage the thin-walled tubes.5.5.1 Research by the US Army Corps of Engineers has shown that it is not possible to sample clean sands without disturbance (2). The research shows that loose sands are densified and dense sands are loosened during tube insertion because the penetration process is drained, allowing grain rearrangement.5.5.2 The tube should be pushed smoothly into the cohesive soil to minimize disturbance. Use in very stiff and hard clays with insertion by driving or hammering cannot provide an intact sample. Samples that must be obtained by driving should be labeled as such to avoid any advanced laboratory testing for engineering properties.5.6 Thin-walled tube samplers are used in mechanically drilled boreholes (Guide D6286). Any drilling method that ensures the base of the borehole is intact and that the borehole walls are stable may be used. They are most often used in fluid rotary drill holes (Guide D5783) and holes using hollow-stem augers (Practice D6151).5.6.1 The base of the boring must be stable and intact. The sample depth of the sampler should coincide with the drilled depth. The absence of slough, cuttings, or remolded soil in the top of the samples should be confirmed to ensure stable conditions (7.4.1).5.6.2 The use of the open thin-walled tube sampler requires the borehole be cased or the borehole walls must be stable as soil can enter the open sampler tube from the borehole wall as it is lowered to the sampling depth. If samples are taken in uncased boreholes the cores should be inspected for any sidewall contamination.5.6.3 Do not use thin-walled tubes in uncased fluid rotary drill holes below the water table. A piston sampler (Practice D6519) must be used to ensure that there is no fluid or sidewall contamination that would enter an open sampling tube.5.6.4 Thin-walled tube samples can be obtained through Dual Tube Direct Push casings (Guide D6282).5.6.5 Thin-walled tube samples are sometimes taken from the surface using other hydraulic equipment to push in the sampler. The push equipment should provide a smooth continuous vertical push.5.7 Soil cores should not be stored in steel tubes for more than one to two weeks, unless they are stainless steel or protected by corrosion resistant coating or plating (6.3.2), see Note 1. This is because once the core is in contact with the steel tube, there are galvanic reactions between the tube and the soil which generally cause the annulus core to harden with time. There are also possible microbial reactions caused by temporary exposure to air. It is common practice to extrude or remove the soil core either in the field or at the receiving laboratory immediately upon receipt. If tubes are for re-use, soil cores must be extruded quickly within a few days since damage to any inside coatings is inevitable in multiple re-use. Extruded cores can be preserved by encasing the cores in plastic wrap, tin foil, and then microcrystalline wax to preserve moisture.5.7.1 Soil cores of soft clays may be damaged in the extrusion process. In cases where the soil is very weak, it may be required to cut sections of the tube to remove soil cores for laboratory testing. See Appendix X1 for recommended techniques.NOTE 1: The one to two week period is just guideline typically used in practice. Longer time periods may be allowed depending on logistics and the quality assurance requirements of the exploration plan.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective sampling. Users of this practice are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice covers a procedure for using a thin-walled metal tube to recover intact soil samples suitable for laboratory tests of engineering properties, such as strength, compressibility, permeability, and density. This practice provides guidance on proper sampling equipment, procedures, and sample quality evaluation that are used to obtain intact samples suitable for laboratory testing.1.2 This practice is limited to fine-grained soils that can be penetrated by the thin-walled tube. This sampling method is not recommended for sampling soils containing coarse sand, gravel, or larger size soil particles, cemented, or very hard soils. Other soil samplers may be used for sampling these soil types. Such samplers include driven split barrel samplers and soil coring devices (Test Methods D1586, D3550, and Practice D6151). For information on appropriate use of other soil samplers refer to Practice D6169.1.3 This practice is often used in conjunction with rotary drilling (Practice D1452 and Guides D5783 and D6286) or hollow-stem augers (Practice D6151). Subsurface geotechnical explorations should be reported in accordance with Practice D5434. This practice discusses some aspects of sample preservation after the sampling event. For more information on preservation and transportation process of soil samples, consult Practice D4220.1.4 This practice may not address special considerations for environmental or marine sampling; consult Practices D6169 and D3213 for information on sampling for environmental and marine explorations.1.5 Thin-walled tubes meeting requirements of 6.3 can also be used in piston samplers, or inner liners of double tube push or rotary-type soil core samplers (Pitcher barrel, Practice D6169). Piston samplers in Practice D6519 use thin-walled tubes.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.7 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.8 The values stated in either inch-pound units or SI units presented in brackets are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 The objective of this practice is to obtain representative samples of the steam and liquid phases as they exist in the pipeline at the sample point, without allowing steam condensation or additional liquid flashing in the separator. A significant feature of the practice is the use of a cyclone-type separator for high-efficiency phase separation which is operated at flow rates high enough to prevent significant heat loss while maintaining an internal pressure essentially the same as the pipeline pressure.4.2 Another significant feature of the practice is to locate the sampling separator at a point on the pipeline where the two-phase flow is at least partially stratified to aid in the separation process. It is neither necessary nor possible to pass representative proportions of each phase through the sampling separator to obtain representative samples. The separator is usually attached to an appropriately oriented port to collect each specific phase – normally on top of the line for steam and at the bottom for liquid. In some cases, piping configurations can generate unusual flow regimes where the reverse is required. If the ratio of one phase to another is not extreme, it may be possible to obtain representative samples of each phase from a horizontal port on the side of the pipeline.4.3 This practice is used whenever liquid or steam samples, or both, must be collected from a two-phase discharge for chemical analysis. This typically includes initial well-testing operations when a well is discharged to the atmosphere or routine well production when a well discharges to a fluid gathering system and power plant. The combined two-phase flow of several wells producing through a common gathering system may also be sampled in accordance with this practice.4.4 This practice is not typically employed when individual wells produce to dedicated production separators. In these cases, the separated steam and liquid at the outlet of the production separator is sampled in accordance with single-phase sampling methods (Specification E947). It may, however, be used downstream of production separators when separator efficiency is expected to be very poor. In these cases, the method is used to remove the contaminating phase from the samples being collected.1.1 The purpose of this practice is to obtain representative samples of liquid and steam as they exist in a pipeline transporting two-phase geothermal fluids.1.1.1 The liquid and steam samples are collected and properly preserved for subsequent chemical analysis in the field or an off-site analytical laboratory.1.1.2 The chemical composition data generated from the analysis of liquid and steam samples may be used for many applications important to geothermal energy exploration, development, and the long-term managed exploitation of geothermal resources. These applications include, but are not limited to, resource evaluations such as determining reservoir temperature and the origin of reservoir fluids, tracer-based measurements of production flow and enthalpy (TFT), compatibility of produced fluids with production, power generation and reinjection hardware exposed to the fluids (corrosivity and scale deposition potential), long-term reservoir monitoring during field exploitation, and environmental impact evaluations including emissions testing.1.1.2.1 To fully utilize the chemical composition data in the applications stated in 1.1.2, specific physical data related to the two-phase discharge, wellbore, and geothermal reservoir may be required. Mathematical reconstruction of the fluid chemistry (liquid and steam) to reservoir conditions is a primary requirement in many applications. At a minimum, this requires precise knowledge of the total fluid enthalpy and pressure or temperature at the sample point. Fluid reconstruction and computations to conditions different from the sample collection point are beyond the scope of this practice.1.2 This practice is limited to the collection of samples from two-phase flow streams at pressures greater than 70 kPa gauge (10 psig) and having a volumetric vapor fraction of at least 20 %. This practice is not applicable to single-phase flow streams such as pumped liquid discharges at pressures above the flash point or superheated steam flows. Refer to Specification E947 for sampling single-phase geothermal fluids.1.3 The sampling of geothermal fluid two-phase flow streams (liquid and steam) requires specialized sampling equipment and proper orientation of sample ports with respect to the two-phase flow line. This practice is applicable to wells not equipped with individual production separators.1.4 The two-phase equipment and techniques described here are often the only way to obtain representative steam and liquid samples from individual producing geothermal wells. They have been developed to address common two-phase conditions such as:1.4.1 Unstable production flow rates that have a large degree of surging,1.4.2 Unknown percentage of total flow that is flashed to steam or is continuously flashing through the production system,1.4.3 Mineral deposition during and after flashing of the produced fluid in wellbores, production piping, and sampling trains,1.4.4 Stratification of flow inside the pipeline and unusual flow regimes at the sampling ports, and1.4.5 Insufficient flash fraction to obtain a steam sample.1.5 This practice covers the sample locations, specialized sampling equipment, and procedures needed to obtain representative liquid and steam samples for chemical analysis.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers aluminium 1350 drawing stock for electrical purposes. The stock shall conform to the chemical composition requirements. The stock shall be uniform in quality and temper and shall be suitable for drawing into wire. The tensile strength tests and requirements for the respective tempers of stock are presented in details. The stock shall be furnished in continuous-length coils without joints, unless otherwise agreed upon between the manufacturer and purchaser. The electrical resistivity tests shall be made on full-section samples of the stock.1.1 This specification covers aluminum 1350 drawing stock 0.375 in. (9.52 mm) to 1.000 in. (25.40 mm) in diameter, in the tempers shown in Table 1, for drawing into wire for electrical conductors (Explanatory Note 1 and Note 2).1.2 The SI values of density and resistivity are to be regarded as the standard. For all other properties the inch-pound values are to be regarded as standard and the SI units may be approximate.NOTE 1: Prior to 1975, aluminum 1350 was designated as EC aluminum.NOTE 2: The aluminum and temper designations conform to ANSI H35.1. Aluminum 1350 corresponds to unified numbering system A91350 in accordance with Practice E527.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
60 条记录,每页 15 条,当前第 4 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页