微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

2.1 This practice is to be used to measure the length of a specified dip tube from the bottom of the sealing surface to the end of the dip tube in a mechanical pump dispenser.2.2 This practice is to be used to measure the exposed length of a specified dip tube of a mechanical pump dispenser.1.1 This practice covers the measurement technique for a dip tube of a mechanical pump dispenser.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Materials undergo an increase in molecular mobility at the glass transition seen as a sigmoidal step increase in the heat capacity. This mobility increase may lead to kinetic events such as enthalpic recovery, chemical reaction or crystallization at temperatures near the glass transition. The heat flow associated with the kinetic events may interfere with the determination of the glass transition.5.2 The glass transition is observed in differential scanning calorimetry as a sigmoidal or step change in specific heat capacity.5.3 MTDSC provides a test method for the separation of the heat flow due to heat capacity and that associated with kinetic events making it possible to determine the glass transition in the presence of interfering kinetic event.5.4 These test methods are useful in research and development, quality assurance and control and specification acceptance.5.5 Other methods for assigning the glass transition temperature include differential scanning calorimetry (Test Method E1356), thermomechanical analysis (Test Method E1545) and dynamic mechanical analysis (Test Method E1640).1.1 These test methods describe the assignment of the glass transition temperature of materials using modulated temperature differential scanning calorimetry (MTDSC) over the temperature range from –120 °C to +600 °C. The temperature range may be extended depending upon the instrumentation used.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Exposure to aerosols in the industrial metal removal environment has been associated with adverse respiratory effects.4.2 Use of this practice will mitigate occupational exposure and effects of exposure to aerosols in the metal removal environment.4.3 Through implementation of this practice, users should be able to reduce instances and severity of respiratory irritation and disease through the effective use of a metal removal fluid management program, appropriate product selection, appropriate machine tool design, proper air handling mechanisms, and control of microorganisms.1.1 This practice sets forth guidelines to control respiratory hazards in the metal removal environment.1.2 This practice does not include prevention of dermatitis, which is the subject of Practice E2693, but it does adopt a similar systems management approach with many control elements in common.1.3 This practice focuses on employee exposure via inhalation of metal removal fluids and associated airborne agents.1.4 Metal removal fluids used for wet machining operations (such as cutting, drilling, milling, or grinding) that remove metal to produce the finished part are a subset of metalworking fluids. This practice does not apply to other operations (such as stamping, rolling, forging, or casting) that use metalworking fluids other than metal removal fluids. These other types of metalworking fluid operations are not included in this document because of limited information on health effects, including epidemiology studies, and on control technologies. Nonetheless, some of the exposure control approaches and guidance contained in this document may be useful for managing respiratory hazards associated with other types of metalworking fluids.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This standard is intended to provide a method for determining the weight percent of carbon and hydrogen in an RDF analysis sample.5.2 Carbon and hydrogen are components of RDF and, when determined, can be used for calculating RDF combustion characteristics.1.1 This test method is for the determination of total carbon and hydrogen in a sample of refuse-derived fuel (RDF). Both carbon and hydrogen are determined in one analysis. This test method yields the total percentages of carbon and hydrogen in RDF as analyzed and the results include not only carbon and hydrogen in the organic matter, but also the carbon present in mineral carbonates and the hydrogen present in the free moisture accompanying the analysis sample as well as hydrogen present as water of hydration.NOTE 1: It is recognized that certain technical applications of the data derived from this test procedure may justify additional corrections. These corrections could involve compensation for the carbon present as carbonates, the hydrogen of free moisture accompanying the analysis sample, and the calculated hydrogen present as water of hydration.1.2 This test method may be applicable to any waste material from which a laboratory analysis sample can be prepared.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This measurement of flow gives results that cannot be predicted with viscosity measurements, due to surface tension and density effects. The measured flow is related to flow performance of viscous materials sprayed on aircraft surfaces or other large structures.1.1 This test method describes a procedure for the determination of the flow of a standard volume of a semisolid or thick liquid under its own weight.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification establishes testing procedures and critical characteristics of 0.68 caliber paintballs which help define whether a paintball is suitable for use in the sport of paintball. Furthermore, the specification establishes minimum warning and package labeling to help ensure that the paintballs are used in a safe manner and that the risk of injury is reduced. Tests shall be performed to conform with the requirements specified in accordance with the following test methods: paintball compatibility with polycarbonate and paintball impact breakage test.1.1 This specification establishes testing procedures and critical characteristics for projectiles, which define whether they are suitable for use in the sport of paintball. Furthermore, the specification establishes minimum warning and package labeling requirements to help ensure that the paintballs are used in a safe manner and that the risk of injury is reduced.1.2 This specification does not cover non-recreational paintballs, for example, those used by law enforcement, scientific, military, or theatrical entities.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Waste composition information has widespread applications and can be used for activities such as solid waste planning, designing waste management facilities, and establishing a reference waste composition for use as a baseline standard in both facility contracts and acceptance test plans.4.2 The method can be used to define and report the composition of MSW through the selection and manual sorting of waste samples. Where applicable, care should be taken to consider the source and seasonal variation of waste.4.3 After performing a waste composition analysis, laboratory analyses may be performed on representative samples of waste components, or mixtures of waste components, for purposes related to the planning, management, design, testing, and operation of resource recovery facilities.1.1 This test method describes procedures for measuring the composition of unprocessed municipal solid waste (MSW) by employing manual sorting. This test method applies to determination of the mean composition of MSW based on the collection and manual sorting of a number of samples of waste over a selected time period covering a minimum of one week.1.2 This test method includes procedures for the collection of a representative sorting sample of unprocessed waste, manual sorting of the waste into individual waste components, data reduction, and reporting of the results.1.3 This test method may be applied at landfill sites, waste processing and conversion facilities, and transfer stations.1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined. The four water treatment levels may be tested individually, all four simultaneously, or any combination of multiple water treatment levels.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is for the use of manufacturers and users of equipment for visual appraisal or measurement of appearance, those writing standards related to such equipment, and others who wish to specify precisely conditions of viewing or measuring attributes of appearance. The use of this practice makes such specifications concise and unambiguous. The functional notation facilitates direct comparisons of the geometric specifications of viewing situations and measuring instruments.1.1 This practice describes the geometry of illuminating and viewing specimens and the corresponding geometry of optical measurements to characterize the appearance of materials. It establishes terms, symbols, a coordinate system, and functional notation to describe the geometric orientation of a specimen, the geometry of the illumination (or optical irradiation) of a specimen, and the geometry of collection of flux reflected or transmitted by the specimen, by a measurement standard, or by the open sampling aperture.1.2 Optical measurements to characterize the appearance of retroreflective materials are of such a special nature that they are treated in other ASTM standards and are excluded from the scope of this practice.1.3 The measurement of transmitted or reflected light from areas less than 0.5 mm in diameter may be affected by optical coherence, so measurements on such small areas are excluded from consideration in this practice, although the basic concepts described in this practice have been adopted in that field of measurement.1.4 The specification of a method of measuring the reflecting or transmitting properties of specimens, for the purpose of characterizing appearance, is incomplete without a full description of the spectral nature of the system, but spectral conditions are not within the scope of this practice. The use of functional notation to specify spectral conditions is described in ISO 5/1.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 This test method is useful for research and development, quality assurance, regulatory compliance and specification-based acceptance.6.2 The kinetic parameters determined by this method may be used to calculate thermal hazard figures-of-merit according to Practice E1231.1.1 This test method describes the determination of the kinetic parameters of Arrhenius activation energy and pre-exponential factor using the Kissinger variable heating rate iso-conversion method (1, 2)2 and activation energy and reaction order by the Farjas method (3) for thermally unstable materials. The test method is applicable to the temperature range from 300 K to 900 K (27 °C to 627 °C).1.2 Both nth order and accelerating reactions are addressed by this method over the range of 0.5 < n < 4 and 1 < p < 4 where n is the nth order reaction order and p is the Avrami reaction order (4). Reaction orders n and p are determined by the Farjas method (3).1.3 This test method uses the same experimental conditions as Test Method E698. The Flynn/Wall/Ozawa data treatment of Test Method E698 may be simultaneously applied to these experimental results.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

3.1 The force and displacement values when converted to a slope are useful in quantifying the differences in tactile response among membrane switches.3.2 Specified resistance is useful to manufacturers and users when designing membrane switch interface circuitry.3.3 Actuation force and contact force are useful to manufacturers and users in determining the suitability, reference and aesthetics of a membrane switch in a given application.3.4 The tendency of a switch to make or break electrical contact at unexpected moments during closure or release can be a sign of a poor design. The degree of teasing can range from a simple annoyance to a failure of critical control process.3.5 The amount of switch sensitivity or teasing can also be a result of poor surface conductivity that will prevent an electrical event even when switch poles are in partial contact.1.1 This test method covers the measurement of force displacement characteristics of a membrane switch.1.1.1 This test method replaces Test Method F1570 (Tactile Ratio). Tactile Actuating Slope Angle and Tactile Recovery Slope Angle better represent the characterization of tactile sensation, previously called “Tactile Ratio” in Test Method F1570.1.1.2 This test method replaces Test Method F1682 (Travel).1.1.3 This test method replaces Test Method F1597 (Actuation and Contact Force).1.1.4 This test method replaces Test Method F1997 (Switch Sensitivity).1.2 Force displacement hysterisis loop curve can be used in the determination of Actuation Force, Displacement, Contact Force, Return Force, and Tactile Actuating Slope Angle and Tactile Recovery Slope Angle.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This  practice  is  applicable  when  small amounts of 241Am are present in plutonium samples (see Test Methods C758 and C759). An example is the determination of 241Am in a 238Pu sample. The high specific activity of 238Pu presents a safety hazard that precludes its presence in a counting facility. Therefore, it is necessary to remove the 238Pu prior to the determination of 241Am. 4.2 When a plutonium solution contains fission or activation products, this practice does not separate all radionuclides that interfere in the determination of 241Am, such as the rare earths. 1.1 This practice describes the use of an ion exchange technique to separate plutonium from solutions containing low concentrations  of americium  prior  to measurement of the 241Am by gamma counting. 1.2 This practice covers the removal of plutonium, but not all the other radioactive isotopes that may interfere in the determination of 241Am. 1.3 This practice can be used when 241Am is to be determined in samples in which the plutonium is in the form of metal, oxide, or other solid provided that the solid is appropriately sampled and dissolved (See Test Methods C758, C759, and C1168). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice will identify waste materials that are potentially unstable when they come in contact with other materials at a waste treatment or disposal site.5.2 This practice will serve to determine the miscibility of waste materials with various media, including other wastes.5.3 This practice may not be applicable to all wastes. The appropriateness of these tests depends upon the proposed management of the waste.5.4 Since the initiation of some chemical reactions are slow to take place, the user may wish to establish reagent-to-waste contact times prior to observing the mixes for any reactions.1.1 This practice is designed to determine whether a waste material reacts when it is mixed with air, water, strong acid, strong base, an oil/solvent mixture, other waste mixtures, or solid media such as a geological formation or solidification agents.1.2 The miscibility of the waste material with the above media can also be defined.NOTE 1: The following ASTM standards provide supplemental information: Test Methods D4978, D4980, D4982, D5049, and D5057 and Practices D4979, D4981, and D5058.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is useful as a repeatable, nondestructive technique to monitor in-place density and moisture of soil and rock along lengthy sections of horizontal, slanted, and vertical access holes or tubes. With proper calibration in accordance with Annex A1, this test method can be used to quantify changes in density and moisture content of soil and rock.5.2 This test method is used in vadose zone monitoring, for performance assessment of engineered barriers at waste facilities, and for research related to monitoring the movement of liquids (water solutions and hydrocarbons) through soil and rock. The nondestructive nature of the test allows repetitive measurements at a site and statistical analysis of results.5.3 The fundamental assumptions inherent in the density measurement portion of this test method are that Compton scattering and photoelectric absorption are the dominant interactions of the gamma rays with the material under test.5.4 The probe response, in counts, can be converted to wet density by comparing the detected rate of gamma radiation with previously established calibration data (see Annex A1).5.5 The probe count response may also be utilized directly for unitless, relative comparison with other probe readings.5.5.1 For materials of densities higher than that of about the density of water, higher count rates within the same soil type relate to lower densities and, conversely, lower count rates within the same soil type relate to higher densities.5.5.2 For materials of densities lower than the density of water, higher count rates within the same soil type relate to higher densities and, conversely, lower count rates within the same soil type relate to lower densities.5.5.3 Because of the functional inflection of probe response for densities near the density of water, exercise great care when drawing conclusions from probe response in this density range.5.6 The fundamental assumption inherent in the moisture measurement portion of this test is that the hydrogen contained in the water molecules within the soil and rock is the dominant neutron thermalizing media, so increased water content of the soil and rock results in higher count rates of the moisture content system of the instrument.1.1 This test method covers collection and comparison of logs of thermalized-neutron counts and back-scattered gamma counts along horizontal or vertical air-filled access tubes.1.2 For limitations, see Section 6, “Interferences.”1.3 The in situ water content in mass per unit volume and the density in mass per unit volume of soil and rock at positions or in intervals along the length of an access tube are calculated by comparing the thermal neutron count rate and gamma count rates respectively to previously established calibration data.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Within the text of this standard, SI units appear first followed by the inch-pound (or other non-SI) units in brackets1.4.1 Reporting the test results in units other than SI shall not be regarded as nonconformance with the standard.1.5 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026.1.5.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards, see Section 8.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
1536 条记录,每页 15 条,当前第 2 / 103 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页