微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Measurement of dry film thickness of organic coatings by physically cutting through the film and optically observing and measuring the thickness offers the advantage of direct measurement as compared with nondestructive means.3.2 Constituent coating layers of an overall thickness of a coating system can usually be measured individually by this test method, provide adhesion between each layer is sufficient. (However, this can be difficult in cases where the primer, topcoat, or multiple coating layers have the same, or very similar, appearance.)FIG. 1 Typical Crater Formed by Boring DeviceNOTE 1: The drawing is not to scale. It is for illustration purposes only.NOTE 2: θ  = 5.710593°  Tan θ = A/B = 0.1   A = 0.1B1.1 This test method covers the measurement of dry film thickness (DFT) of coating films by microscopic observation of a precision-cut, shallow-angle crater bored into the coating film. This crater reveals cross sectional layers appearing as rings, whose width is proportional to the depth of the coating layer(s) and allows for direct calculation of dry film thickness.1.1.1 The Apparatus, Procedure, and Precision and Bias discussions include Method A and Method B. Method A involves the use of an optical measurement apparatus which is no longer commercially available, but remains a valid method of dry film measurement. Method B is a software driven measurement procedure that supersedes Method A.1.2 The substrate may be any rigid, metallic material, such as cold-rolled steel, hot-dipped galvanized steel, aluminum, etc. The substrate must be planar with the exception of substrates exhibiting “coil set,” which may be held level by the use of the clamping tool on the drilling device.NOTE 1: Variations in the surface profile of the substrate may result in misrepresentative organic coating thickness readings. This condition may exist over substrates such as hot-dipped, coated steel sheet. This is true of all “precision cut” methods that are used to determine dry film thickness of organic coatings. This is why several measurements across the strip may be useful if substrate surface profile is suspect.1.3 The range of thickness measurement is 0 to 3.5 mils (0 to 89 μm).NOTE 2: For DFT measurements of films greater than 3.5 mils (89μm), but less than 63 mils (1600 μm), a 45° borer may be used in accordance with this test method, with the exception of 6.8, where the micrometer reading would provide a direct read-out, and division by ten would be unnecessary per 4.3.1 Method A.1.4 Measurements may be made on coil-coated sheet, certain formed products, or on test panels.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The puncture-propagation of tear test measures the resistance of a material to snagging, or more precisely, to dynamic puncture and propagation of that puncture resulting in a tear. Failures due to snagging occur in a variety of end uses, including industrial bags, liners, and tarpaulins. The units reported in this test method are Newtons (tear resistance).4.2 Experience has shown that for many materials puncture does not contribute significantly to the force value determined, due to the sharpness of the propagating probe used. However, comparing the results of prepunctured test specimens with normal nonpunctured specimens will give an indication of the extent of any puncture resistance in the reported result.4.3 For many materials, there may be a specification that requires the use of this test method, but with some procedural modifications that take precedence when adhering to the specification. Therefore, it is advisable to refer to that material specification before using this test method. Table 1 of Classification System D4000 lists the current ASTM materials standards.1.1 This test method covers the determination of the dynamic tear resistance of plastic film and thin sheeting subjected to end-use snagging-type hazards.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Film has been arbitrarily defined as sheeting having nominal thickness not greater than 0.25 mm (0.010 in.).NOTE 2: There is no known ISO equivalent to this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice provides a standard method of testing damaged composite laminates which are too thin to be tested using typical anti-buckling fixtures, such as those used in Test Method D7137/D7137M. The laminate is first impacted or indented in order to produce a damage state representative of actual monolithic solid laminate structure. Impacting or static indentation is not performed on an assembled sandwich panel, as the damage state is altered by energy absorption in the core and by support of the core during the impact or indentation event. After damaging, the laminate is bonded onto the core with the impacted or indentation side of the laminate against the core, and with a localized un-bonded area encompassing the damage site. Fig. 1 illustrates the adhesive removal to avoid the damaged area and the assembly of the sandwich specimen with the impacted damaged laminate flipped over from the impacting or indentation orientation. The final assembled sandwich specimen is then tested using a long beam flexure setup with the damaged laminate being on the compression side. The sandwich panel configuration is used as a form of anti-buckling support for the thin damaged laminate.5.2 Susceptibility to damage from concentrated out-of-plane forces is one of the major design concerns of many structures made of advanced composite laminates. Knowledge of the damage resistance and damage tolerance properties of a laminated composite plate is useful for product development and material selection.5.3 The residual strength data obtained using this test method is used in research and development activities as well as for design allowables; however the results are specific to the geometry and physical conditions tested and are generally not scalable to other configurations.5.4 The properties obtained using this test method can provide guidance in regard to the anticipated damage tolerance capability of composite structures of similar material, thickness, stacking sequence, and so forth. However, it must be understood that the damage tolerance of a composite structure is highly dependent upon several factors including geometry, stiffness, support conditions, and so forth. Significant differences in the relationships between the existent damage state and the residual compressive strength can result due to differences in these parameters. For example, residual strength and stiffness properties obtained using this test method would more likely reflect the damage tolerance characteristics of an un-stiffened monolithic skin or web than that of a skin attached to substructure which resists out-of-plane deformation.5.5 The reporting section requires items that tend to influence residual compressive strength to be reported; these include the following: material, methods of material fabrication, accuracy of lay-up orientation, laminate stacking sequence and overall thickness, specimen geometry, specimen preparation, specimen conditioning, environment of testing, void content, volume percent reinforcement, type, size and location of damage (including method of non-destructive inspection (NDI)), fixture geometry, time at temperature, and speed of testing.5.6 Properties that result from the residual strength assessment include the following: compressive residual strength FCAI.1.1 This practice covers an approach for compressive testing thin damaged multidirectional polymer matrix composite laminates reinforced by high-modulus fibers using a sandwich long beam flexure specimen. It provides a test configuration in which the core does not constrain any protruding back side damage. It is limited to testing of monolithic solid laminates which are too thin to be tested using typical anti-buckling fixtures. It does not cover compressive testing of damaged sandwich panel facings. The composite material forms are limited to continuous-fiber or discontinuous-fiber (tape or fabric, or both) reinforced composites in which the laminate is balanced and symmetric with respect to the test direction1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.2.1 Within the text the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 These test methods are useful to determine compliance of thermally conductive sheet electrical insulation with specification requirements established jointly by a producer and a user.4.2 These test methods have been found useful for quality assessment. Results of the test methods can be useful in apparatus design.1.1 This standard is a compilation of test methods for evaluating properties of thermally conductive electrical insulation sheet materials to be used for dielectric applications.1.2 Such materials are thin, compliant sheets, typically produced by mixing thermally conductive particulate fillers with organic or silicone binders. For added physical strength these materials are often reinforced with a woven or nonwoven fabric or a dielectric film.1.3 These test methods apply to thermally conductive sheet material ranging from about 0.02 to 6-mm thickness.1.4 The values stated in SI units are to be regarded as standard.NOTE 1: There is no IEC publication or ISO standard equivalent to this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See also 18.1.2 and 19.1.2.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 As a result of the manufacturing process, internal stresses are locked into the film and these can be released by heating.NOTE 3: For any given type of film or sheeting, the temperatures at which shrinkage will begin are related to processing techniques employed to manufacture the film and also may be related to a phase transition in the base resin.5.2 Shrink tension affects the appearance and performance of a film in a shrink-packaging application. It is also used to determine the degree and direction of orientation. The orientation exerts a great influence upon important physical characteristics such as tensile strength, stiffness, tear resistance, and impact strength.5.3 Data from Procedure A are most useful for determining the degree and direction of orientation, orientation release stress, and the maximum force that the film can exert at a given temperature.5.4 Since, in actual applications, film is seldom, if ever, totally restrained, data from Procedure B are useful in estimating the force an item to be packaged will actually receive and in predicting the appearance of packaged items.5.5 The characterization of shrink tension as a function of temperature, and the resultant determination of orientation release stress and its corresponding temperature, is usually carried out only for a particular material of specified thickness for a defined fabrication process. For product development purposes, quality control and determination of conformity be made to the specification of the material being tested. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the relevant ASTM material specification shall take precedence over those mentioned in this test method. If there are no relevant ASTM material specifications, then the default conditions apply. Table 1 of Classification Systems D4000 lists the ASTM material specifications that currently exist.1.1 This test method covers the determination of the shrink tension and related characteristics, that is, shrink force and orientation release stress, of heat-shrinkable plastic film and sheeting of less than 1.0 mm (0.04 in.) thickness. Two procedures are described that permit the measurement of shrink forces at predetermined temperatures. They are as follows:1.1.1 Procedure A is designed to measure the maximum force exerted by a specimen that is totally restrained from shrinking as it is heated rapidly to a specific temperature.1.1.2 Procedure B is designed to measure the maximum force exerted by a specimen that is permitted to shrink a predetermined amount prior to restraint while being heated rapidly to a specific temperature.1.2 Orientation release stress can be determined from the data obtained using Procedure A.1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: Film has been arbitrarily defined as sheeting having nominal thickness not greater than 0.25 µm (0.010 in.).NOTE 2: There is no known ISO equivalent to this test method.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 In-plane length measurements can be used in calculations of parameters, such as residual strain and Young's modulus.5.2 In-plane deflection measurements are required for specific test structures. Parameters, including residual strain, are calculated given the in-plane deflection measurements.1.1 This test method covers a procedure for measuring in-plane lengths (including deflections) of patterned thin films. It applies only to films, such as found in microelectromechanical systems (MEMS) materials, which can be imaged using an optical interferometer, also called an interferometric microscope.1.2 There are other ways to determine in-plane lengths. Using the design dimensions typically provides more precise in-plane length values than using measurements taken with an optical interferometric microscope. (Interferometric measurements are typically more precise than measurements taken with an optical microscope.) This test method is intended for use when interferometric measurements are preferred over using the design dimensions (for example, when measuring in-plane deflections and when measuring lengths in an unproven fabrication process).1.3 This test method uses a non-contact optical interferometric microscope with the capability of obtaining topographical 3-D data sets. It is performed in the laboratory.1.4 The maximum in-plane length measured is determined by the maximum field of view of the interferometric microscope at the lowest magnification. The minimum deflection measured is determined by the interferometric microscope’s pixel-to-pixel spacing at the highest magnification.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Residual strain measurements are an aid in the design and fabrication of MEMS devices. The value for residual strain can be used in Young's modulus calculations.1.1 This test method covers a procedure for measuring the compressive residual strain in thin films. It applies only to films, such as found in microelectromechanical systems (MEMS) materials, which can be imaged using an optical interferometer, also called an interferometric microscope. Measurements from fixed-fixed beams that are touching the underlying layer are not accepted.1.2 This test method uses a non-contact optical interferometric microscope with the capability of obtaining topographical 3-D data sets. It is performed in the laboratory.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Strain gradient values are an aid in the design and fabrication of MEMS devices.1.1 This test method covers a procedure for measuring the strain gradient in thin, reflecting films. It applies only to films, such as found in microelectromechanical systems (MEMS) materials, which can be imaged using an optical interferometer, also called an interferometric microscope. Measurements from cantilevers that are touching the underlying layer are not accepted.1.2 This test method uses a non-contact optical interferometric microscope with the capability of obtaining topographical 3-D data sets. It is performed in the laboratory.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Factors that may influence the thermal-transmission properties of a specimen of material are described in Practice C1045 and the Precision and Bias section of Test Method C177.5.2 Because of the required test conditions prescribed by this test method, it shall be recognized that the thermal properties obtained will not necessarily apply without modification to all conditions of service. As an example, this test method normally provides that the thermal properties shall be obtained on specimens that do not contain moisture, although in service such conditions may not be realized. Even more basic is the dependence of the thermal properties on variables such as mean temperature and temperature difference.5.3 When a new or modified design of apparatus is evolved, tests shall be made on at least two sets of differing material of known long-term thermal stability. Tests shall be made for each material at a minimum of two different mean temperatures within the operating range of each. Any differences in results should be carefully studied to determine the cause and then be removed by appropriate action. Only after a successful verification study on materials having known thermal properties traceable to a recognized national standards laboratory shall test results obtained with this apparatus be considered to conform with this test method. Periodic checks of apparatus performance are recommended.5.4 The thermal transmission properties of many materials depend upon the prior thermal history. Care must be exercised when testing such specimens at a number of conditions so that tests are performed in a sequence that limits such effects on the results.5.5 Typical uses for the thin-heater apparatus include the following:5.5.1 Product development and quality control applications.5.5.2 Measurement of thermal conductivity at desired mean temperatures.5.5.3 Thermal properties of specimens that are moist or close to melting point or other critical temperature (see Note 1).NOTE 1: Apparatus of the type covered by this test method apply to the study of thermal properties of specimens containing moisture because of the use of small temperature differences and the low thermal capacity of the heat source.5.5.4 Determination of thermal properties of relatively high R value insulation samples with large apparatuses. In the case of the metal-screen heater apparatus, samples with thicknesses up to 15 cm can be measured.1.1 This test method covers the determination of the steady-state thermal transmission properties of flat-slab specimens of thermal insulation using a thin heater of uniform power density having low lateral heat flow. A thin heater with low lateral thermal conductance can reduce unwanted lateral heat flow and avoid the need for active-edge guarding.1.2 This primary test method of thermal-transmission measurement describes a principle, rather than a particular apparatus. The principle involves determination of the thermal flux across a specimen of known thickness and the temperatures of the hot and cold faces of the specimen.1.3 Considerable latitude is given to the designer of the apparatus in this test method; since a variety of designs is possible, a procedure for qualifying an apparatus is given in 5.3.1.4 The specimens must meet the following conditions if thermal resistance or thermal conductance of the specimen is to be determined by this test method2:1.4.1 The portion of the specimen over the isothermal area of the heater must accurately represent the whole specimen.1.4.2 The remainder of the specimen should not distort the heat flow in that part of the specimen defined in 1.4.1.1.4.3 The specimen shall be thermally homogeneous such that the thermal conductivity is not a function of the position within the sample, but rather may be a function of direction, time, and temperature. The specimen shall be free of holes, of high-density volumes, and of thermal bridges between the test surfaces or the specimen edges.1.4.4 Test Method C177 describes tests that can help ascertain whether conditions of 1.4 are satisfied. For the purposes of this test method, differences in the measurements of less than 2 % may be considered insignificant, and the requirements fulfilled.1.5 The specimens shall meet one of the following requirements, in addition to those of 1.4.1.5.1 If homogeneous materials as defined in Terminology C168 are tested, then the thermal resistivity and thermal conductivity can be determined by this test method.1.5.2 If materials which are layered or otherwise thermally inhomogeneous are tested, thermal resistance and thermal conductance can be determined by this test method.1.6 Two versions of thin-heater apparatus using the same principle of the standard are described in Annex A1 and Annex A2. They are similar in concept but differ in size and construction, and hence warrant separate descriptions for each design. This test method in no way limits the size of the thin-heater element. One of the units described uses a thin metal foil, while the other uses a metal screen as the heat source. The smaller, foil apparatus is designed to make rapid measurements of heat transmission through specimens as thin as 0.5 cm and as thick as 2 cm; however, an apparatus using a foil heater could be designed to measure much thicker materials, if desired. The larger, screen apparatus is designed to measure specimens with thicknesses between 3 and 15 cm, where the exact limits depend on the thermal resistance of the specimens. Both apparatuses use thermocouples for measuring temperature, but other temperature-sensing systems can be used.1.7 This test method covers the theory and principles of the measurement technique. It does not provide details of construction other than those required to illustrate two devices which meet the prescribed requirements. Detailed information is available in References (1-23)3 and the Adjunct.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Brown and Lu4,5 show the Charpy impact energy is related to the ultimate critical temperature of the rapid crack propagation [RCP] behavior as measured by the ISO 13477, S-4 test.65.2 The test method may be used to determine the impact energy of polyethylene used in the manufacture of pipe . This test method involves the preparation of a small compression molded specimen of PE resin that is then notched in a specified manner. The specimen is then broken in a pendulum impact machine. The impact energy is recorded in joules. The value obtained is referred to as the Charpy impact energy.1.1 This test method describes the specimen preparation and the method of measuring the impact energy of polyethylene used in pressurized pipes.1.2 The test specimens are taken from compression molded plaques of the resin from pellets or pipe.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method indicates approximate change in properties of asphalt during conventional hot-mixing at about 302 °F (150 °C) as indicated by viscosity and other rheological measurements. It yields a residue which approximates the asphalt condition as incorporated in the pavement. If the mixing temperature differs appreciably from the 302 °F (150 °C) level, more or less effect on properties will occur. This test method can also be used to determine mass change, which is a measure of asphalt volatility.NOTE 1: The quality of results produced by this standard is dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guidance provides a means of evaluating and controlling some of those factors.1.1 This test method is intended to measure the effect of heat and air on a moving film of semi-solid asphaltic materials. The effects of this treatment are determined from measurements of the selected properties of the asphalt before and after the test.1.2 The values stated in inch-pound units are to be regarded as the standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers sputtering targets fabricated from chromium metal for use in thin film applications. The grades of chromium covered in this specification, are based on the total metallic impurity content of the metallic elements, and are classified as 4N, 3N7, 3N5, 3N, and 2N8. Materials shall be tested using analytical methods such as combustion/infrared spectrometry, thermal conductivity, atomic absorption spectrometry, direct current plasma, inductively coupled plasma, and spark source mass spectroscopy or glow discharge mass spectroscopy; and the individual grades shall conform to specified values of chemical composition, density, grain size.1.1 This specification covers sputtering targets fabricated from chromium metal.1.2 This specification sets purity grade levels, physical attributes, analytical methods and packaging requirements.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The rate of evaporation of volatile liquids from a solution or dispersion is important because it affects the rate of deposition of a film and flow during deposition, and thereby controls the structure and appearance of the film. In the formulation of paints and related products, solvents are chosen based on the evaporation characteristics appropriate to the application technique and the curing temperature.1.1 These test methods cover the determination of the rate of evaporation of volatile liquids of low viscosity using the Shell thin-film evaporometer. These test methods have been applied to a wide range of volatile liquids, including paint, varnish, and lacquer solvents and thinners to various hydrocarbons and to insecticide spray-base oils.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The application of HFTs and temperature sensors to building envelopes provide in-situ data for evaluating the thermal performance of an opaque building component under actual environmental conditions, as described in Practices C1046 and C1155. These applications require calibration of the HFTs at levels of heat flux and temperature consistent with end-use conditions.5.2 This practice provides calibration procedures for the determination of the heat flux transducer sensitivity, S, that relates the HFT voltage output, E, to a known input value of heat flux, q.5.2.1 The applied heat flux, q, shall be obtained from steady-state tests conducted in accordance with either Test Method C177, C518, C1114, C1363, or, for cryogenic applications, Guide C1774.5.2.2 The resulting voltage output, E, of the heat flux transducer is measured directly using (auxiliary) readout instrumentation connected to the electrical output leads of the sensor.NOTE 1: A heat flux transducer (see also Terminology C168) is a thin stable substrate having a low mass in which a temperature difference across the thickness of the device is measured with thermocouples connected electrically in series (that is, a thermopile). Commercial HFTs typically have a central sensing region, a surrounding guard, and an integral temperature sensor that are contained in a thin durable enclosure. Practice C1046, Appendix X2 includes detailed descriptions of the internal constructions of two types of HFTs.5.3 The HFT sensitivity depends on several factors including, but not limited to, size, thickness, construction, temperature, applied heat flux, and application conditions including adjacent material characteristics and environmental effects.5.4 The subsequent conversion of the HFT voltage output to heat flux under application conditions requires (1) a standardized technique for determining the HFT sensitivity for the application of interest; and, (2) a comprehensive understanding of the factors affecting its output as described in Practice C1046.5.5 The installation of a HFT potentially changes the local thermal resistance of the test artifact and the resulting heat flow differs from that for the undisturbed building component. The following techniques have been used to compensate for this effect.5.5.1 Ensure that the installation is adequately guarded (3). In some cases, an assumption is made that the change in thermal resistance is negligible, particularly for very thin HFTs with a large surrounding guard, or is incalculable (1).5.5.2 For the embedded configuration, analytical and numerical methods have been used to account for the disturbance of the heat flux due to the presence of the HFT. Such analyses are outside the scope of this practice but details are available in Refs (4-8).5.5.3 For the surface-mounted configuration, measurement errors have been quantified by Trethowen (9). Empirical calibrations have also been determined by conducting a series of field calibrations or measurements. Such procedures are outside the scope of this practice but details are available in Orlandi et al. (10) and Desjarlais and Tye (11).5.6 Cryogenic and high temperature calibrations shall consider the effect of parasitic heat transfer due to large environmental temperature differences in performing thermal balances. The calibration and testing of heat flux transducers at cryogenic temperatures using the flat plate boiloff absolute calorimeter described in Guide C1774 and an unguarded flat plate method are described by Johnson et al. (12).1.1 This practice, in conjunction with either Test Method C177, C518, C1114, or C1363, establishes procedures for the calibration of heat flux transducers that are dimensionally thin in comparison to their planar dimensions.1.1.1 The thickness of the heat flux transducer shall be less than 30 % of the narrowest planar dimension of the heat flux transducer.1.2 This practice describes techniques for determining the sensitivity, S, of a heat flux transducer when subjected to one dimensional heat flow normal to the planar surface or when installed in a building application.1.3 This practice shall be used in conjunction with Practice C1046 and Practice C1155 when performing in-situ measurements of heat flux on opaque building components. This practice is comparable, but not identical, to the calibration techniques described in ISO 9869-1.1.4 This practice is not intended to determine the sensitivity of heat flux transducers used as components of heat flow meter apparatus, as in Test Method C518, or used for in-situ industrial applications, as covered in Practice C1041.1.5 This practice does not preclude the laboratory calibration of heat flux transducers for large-scale insulation systems operated at temperatures lower or higher than that for building components. For these applications, the heat flux transducers shall be calibrated at the temperatures that the transducer will be used.1.5.1 For cryogenic applications, the test apparatuses described in Guide C1774 are acceptable methods for calibration.1.6 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.7 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The goal of the NDT is to detect defects that have been implicated in the failure of the COPV metal liner, or have led to leakage, loss of contents, injury, death, or mission, or a combination thereof. Liner defects detected by NDT that require special attention by the cognizant engineering organization include through cracks, part-through cracks, liner buckling, pitting, thinning, and corrosion under the influence of cyclic loading, sustained loading, temperature cycling, mechanical impact and other intended or unintended service conditions.NOTE 3: Liners made from stainless steel and nickel-based alloys exhibit a higher damage resistance to impact than those made from aluminum.NOTE 4: Safe life is the goal for any COPV so that a through crack in the liner will not develop during the service life.NOTE 5: The use a material with good fatigue and slow crack growth characteristics is important. For example, nickel-based alloys are better than precipitation-hardened stainless steel. Aluminum also has good ductility and crack resistance.4.2 The COPVs covered in this guide consist of a metallic liner overwrapped with high-strength fibers embedded in polymeric matrix resin (typically a thermoset). Metallic liners may be spun formed from a deep drawn/extruded monolithic blank or may be fabricated by welding formed components. Designers often seek to minimize the liner thickness in the interest of weight reduction. COPV liner materials used can be aluminum alloys, titanium alloys, nickel-chromium alloys, and stainless steels, impermeable polymer liner such as high density polyethylene, or integrated composite materials. Fiber materials can be carbon, aramid, glass, PBO, metals, or hybrids (two or more types of fiber). Matrix resins include epoxies, cyanate esters, polyurethanes, phenolic resins, polyimides (including bismaleimides), polyamides and other high performance polymers. Common bond line adhesives are generally epoxies (FM-73, West 105, and Epon 862) or urethanes with thicknesses ranging from 0.13 mm (0.005 in.) to 0.38 mm (0.015 in.). Metal liner and composite overwrap materials requirements are found in ANSI/AIAA S-080 and ANSI/AIAA S-081, respectively. Pictures of representative COPVs are shown in Guide E2981.4.3 The operative failure modes COPV metal liners and metal PVs, in approximate order of likelihood, are: (a) fatigue cracking, (b) buckling, (c) corrosion, (d) environmental cracking, and (e) overload.NOTE 6: For launch vehicles and satellites, the strong drive to reduce weight has pushed designers to adopt COPVs with thinner metal liners. Unfortunately, this configuration is more susceptible to liner buckling. Therefore, as a precursor to liner fatigue, attention should be paid to liner buckling.4.4 Per MIL-HDBK-340, the primary intended function of COPVs as discussed in this guide will be to store pressurized gases and fluids where one or more of the following apply:4.4.1 Contains stored energy of 19 310 J (14 240 ft-lbf) or greater based on adiabatic expansion of a perfect gas.4.4.2 Contains a gas or liquid that would endanger personnel or equipment or create a mishap (accident) if released.4.4.3 Experiences a design limit pressure greater than 690 kPa (100 psi).4.5 Per NASA-STD-(I)-5019, COPVs should comply with the latest revision of ANSI/AIAA S-081. The following requirements also apply when implementing S-081:4.5.1 Maximum Design Pressure (MDP) should be substituted for all references to Maximum Expected Operating Pressure (MEOP) in S-081.4.5.2 COPVs shall have a minimum of 0.999 probability of no stress rupture failure of the composite shell during the service life.NOTE 7: For other aerospace applications, the cognizant engineering organization should select the appropriate probability of survival, for example, 0.99, 0.999, 0.9999, etc., depending on the anticipated failure mode, damage tolerance, safety factor, or consequence of failure, or a combination thereof. For example, a probability of survival of 0.99 means that on average, 1 in 100 COPVs will fail. COPVs exhibiting catastrophic failure modes (BBL composite shell stress rupture versus LBB liner leak), lower damage tolerance (cylindrical versus spherical vessels), lower safety factor, and high consequence of failure will be subject to more rigorous NDT.4.6 Application of the NDT procedures discussed in this standard is intended to reduce the likelihood of liner failure, commonly denoted leak before burst (LBB), characterized by leakage and loss of the pressurized commodity, thus mitigating or eliminating the attendant risks associated with loss of the pressurized commodity, and possibly mission.4.6.1 NDT is done on fracture-critical parts such as COPVs to establish that a low probability of preexisting flaws is present in the hardware.4.6.2 Per the discretion of the cognizant engineering organization, NDT for fracture control of COPVs should follow additional general and detailed guidance described in MIL-HDBK-6870, NASA-STD-5019, MSFC-RQMT-3479, or ECSS-E-30-01A, or a combination thereof, not covered in this guide.4.6.3 Hardware that is proof tested as part of its acceptance (that is, not screening for specific flaws) should receive post-proof NDT at critical welds and other critical locations.4.7 Discontinuity Types—Specific discontinuity types are associated with the particular processing, fabrication and service history of the COPV. COPV composite overwraps can have a myriad of possible discontinuity types, with varying degrees of importance in terms of effect on performance (see 4.7 in Guide E2981). As for discontinuities in the metallic liner, the primary concern from an NDT perspective is to detect discontinuities that can develop cracks or reduce residual strength of the liner below the levels required, within the context of the life cycle. Therefore, discontinuities should be categorized as follows:4.7.1 Inherent material discontinuities: inclusions, grain boundaries, etc., detected during (a) and (b) of 5.5.NOTE 8: Inherent material discontinuities are generally much smaller than the damage-tolerance limit size. Any design that does not satisfy this statement should be revised. Quality control procedures in place in the manufacturing process should eliminate any source materials that do not satisfy specifications.4.7.2 Manufacturing-induced discontinuities: caused by welding, machining, heat treatment, etc., detected during (b) and (c) of 5.5.NOTE 9: Manufacturing-induced discontinuities depend on the manufacturing process, and can include machining marks, improper heat treatment, and weld-related discontinuities such as lack of fusion, porosity, inclusions, zones of local material embrittlement, shrinkage, and cracking.4.7.3 Service-induced discontinuities: fatigue, corrosion, stress corrosion cracking, wear, accidental damage, etc. detected during (d) and (e) of 5.5 (after the COPV has been installed). In these cases, NDT should either be made on a “remove and inspect” or “in-situ” basis depending on the procedure and equipment used.4.8 A conservative damage-tolerance life assessment is made by assuming the existence of a crack-like discontinuity or system of discontinuities, and determining the maximum size or other characteristic of this discontinuity(s) that can exist at the time the vessel is placed into service but not progress to failure under the expected service conditions. This then defines the dimensions or other characteristics of the crack or crack-like discontinuity or system of crack-like discontinuities that should be detected by NDT.NOTE 10: Welding or machining may result in non-crack like flaws/imperfections/conditions that may be important, and NDT choices for these flaws/imperfections/conditions may be different than for crack-like ones.4.9 Acceptance Criteria—Determination about whether a COPV meets acceptance criteria and is suitable for aerospace service should be made by the cognizant engineering organization. When examinations are performed in accordance with this guide, the engineering drawing, specification, purchase order, or contract should indicate the acceptance criteria.4.9.1 Accept/reject criteria should consist of a listing of the expected kinds of imperfections and the rejection level for each.4.9.2 The classification of the articles under test into zones for various accept/reject criteria should be determined from contractual documents.4.9.3 Rejection of COPVs—If the type, size, or quantities of defects are found to be outside the allowable limits specified by the drawing, purchase order, or contract, the composite article should be separated from acceptable articles, appropriately identified as discrepant, and submitted for material review by the cognizant engineering organization, and given one of the following dispositions; (1) acceptable as is, (2) subject to further rework or repair to make the materials or component acceptable, or (3) scrapped (made permanently unusable) when required by contractual documents.4.9.4 Acceptance criteria and interpretation of result should be defined in requirements documents prior to performing the examination. Advance agreement should be reached between the purchaser and supplier regarding the interpretation of the results of the examinations. All discontinuities having signals that exceed the rejection level as defined by the process requirements documents should be rejected unless it is determined from the part drawing that the rejectable discontinuities will not remain in the finished part.4.10 Certification of PVs—ANSI/AIAA S-080 defines the approach for design, analysis, and certification of metallic PVs.4.11 Certification of COPVs—ANSI/AIAA S-081 defines the approach for design, analysis, and certification of COPVs, while ANSI/AIAA S-080 defines the approach for design, analysis, and certification of PVs. More specifically, the PV or COPV thin-walled metal liner should exhibit a leak before burst (LBB) failure mode or shall possess adequate damage tolerance life (safe-life), or both, depending on criticality and whether the application is for a hazardous or nonhazardous fluid. Consequently, the NDT procedure should detect any discontinuity that can cause burst at expected operating conditions during the life of the COPV. The Damage-Tolerance Life requires that any discontinuity present in the liner will not grow to failure during the expected life of the COPV. Fracture mechanics assessment of crack growth is the typical approach used for setting limits on the sizes of discontinuities that can safely exist. This establishes the defect criteria: all discontinuities equal to or larger than the minimum size or have J-integral or other applicable fracture mechanics-based criteria that will result in failure of the vessel within the expected service life are classified as defects and should be addressed by the cognizant engineering organization.4.11.1 Design Requirements—COPV design requirements related to the metallic liner are given in ANSI/AIAA S-080. The key requirement is the stipulation that the PV or COPV thin-walled metal liner should exhibit an LBB failure mode or should possess adequate damage tolerance life (safe-life), or both. The overwrap design should be such that, if the liner develops a leak, the composite will allow the leaking fluid (liquid or gas) to pass through it so that there will be no risk of composite rupture.4.12 Probability of Detection (POD)—Detailed instruction for assessing the reliability of NDT data using POD of a complex structure such as a COPV is beyond the scope of this guide. Therefore, only general guidance is provided. More detailed instruction for assessing the capability of an NDT procedure in terms of the POD as a function of flaw size, a, can be found in MIL-HDBK-1823. The statistical precision of the estimated POD(a) function (Fig. 1) depends on the number of examination sites with targets, the size of the targets at the examination sites, and the basic nature of the examination result (hit/miss or magnitude of signal response).FIG. 1 Probability of Detection as a Function of Flaw Size, POD(a), Showing the Location of the Smallest Detectable Flaw and a90 (Left); POD(a) With Confidence Bounds Added and Showing the Location of a90/95 (Right)4.12.1 Given that a90/95 has become a de facto design criterion, it is important to estimate the 90th percentile of the POD(a) function more precisely than lower parts of the curve. This can be accomplished by placing more targets in the region of the a90 value but with a range of sizes so the entire curve can still be estimated.NOTE 11: a90/95 for a metallic liner and generation of a POD(a) function is predicated on the assumption that critical initial flaw size (CIFS) for a liner of a given thickness can be detected with a capability of 90/95 (90 percent probability of detection at a 95 percent confidence level). This is problematic for COPVs with very thin metallic liners where the CIFS will be smaller than the minimum detectable flaw sizes given in Table 1 in NASA-STD-5009. At this limit of detection (CIFS < a90/95), a90/95 will have no validity for a thin-walled COPV.4.12.2 NASA-STD-5009 defines typical limits of NDT capability for a wide range of NDT procedures and applications. Given the defect criteria established by the Damage-Tolerance Life requirements and the potential discontinuities to be detected, NASA-STD-5009 can be used to select NDT procedures that are likely to achieve the required examination capability.NOTE 12: NDT of fracture critical hardware should detect the initial crack sizes used in the damage tolerance fracture analyses with a capability of 90/95. The minimum detectable crack sizes for the standard NDT procedures shown in Table 1 of NASA-STD-5009 meet the 90/95 capability requirement. The crack size data in Table 1 of NASA-STD-5009 are based principally on an NDT capability study that was conducted on flat, fatigue-cracked 2219-T87 aluminum panels early in the Space Shuttle program. Although many other similar capability studies and tests have been conducted since, none have universal application, neither individually or in combination. Conducting an ideal NDT capability demonstration where all of the variables are tested is obviously unmanageable and impractical.4.12.3 Aspect Ratio and Equivalent Area Considerations—Current standards governing aerospace metallic pressure vessels (ANSI/AIAA S-080) and COPV liners (ANSI/AIAA S-081) require that fracture analysis be performed to determine the CIFS for cracks having an aspect ratio ranging from 0.1 to 0.5. However, there is insufficient data to support the approach of testing at only one aspect ratio and then using an equivalent area approach to extend the results to the required range of aspect ratios (1-9).20 Accordingly, POD testing on metallic COPV liners should be performed at the bounds of the required range of crack aspect ratios.NOTE 13: Caution: To minimize mass, designers of aerospace systems are reducing the wall thickness for metallic pressure vessels and COPV liners. This reduction in wall thickness produces higher net section stresses, for a given internal pressure, resulting in smaller CIFS. These smaller crack sizes approach the limitations of current NDT. Failure to adequately demonstrate the capabilities of a given NDT procedure over the required range of crack aspect ratios may lead to the failure to detect a critical flaw resulting in a catastrophic tank failure.4.12.4 To provide reasonable precision in the estimates of the POD(a) function, experience suggests that the specimen test set contain at least 60 targeted sites if the system provides only a binary, hit/miss response and at least 40 targeted sites if the system provides a quantitative target response, â. These numbers are minimums.4.12.5 For purposes of POD studies, the NDT procedure should be classified into one of three categories:4.12.5.1 Those which produce only qualitative information as to the presence or absence of a flaw, that is, hit/miss data,4.12.5.2 Those which also provide some quantitative measure of the size of the target (for example, flaw or crack), that is, â versus a data, and4.12.5.3 Those which produce visual images of the target and its surroundings.4.12.6 Detailed POD Guidance—For detailed guidance on how to conduct a POD study, including system definition and control, calibration, noise, demonstration design, demonstration tests, data analysis, presentation of results, retesting, and process control plan, consult MIL-HDBK-1823.4.12.6.1 For detailed guidance on how to conduct a POD study for ET, PT, and UT, consult MIL-HDBK-1823, Appendices A through D, respectively.4.12.6.2 For detailed test program guidance; specimen design, fabrication, documentation, and maintenance; statistical analysis of NDT data; model-assisted determination of POD; special topics; and related documents, consult MIL-HDBK-1823, Appendices E through J, respectively.4.13 NDT Data Reliability—MIL-HDBK-1823 provides nonbinding guidance for estimating the detection capability of NDT procedures for examining either new or in-service hardware for which a measure of NDT reliability is needed. Specific guidance is given in MIL-HDBK-1823 for ET, PT, and UT. MIL-HDBK-1823 may be used for other NDT procedures, such as RT or Profilometry, provided they provide either a quantitative signal, â, or a binary response, hit/miss. Because the purpose is to relate POD with target size (or any other meaningful feature like chemical composition), “size” (or feature characteristic) should be explicitly defined and be unambiguously measurable, that is, other targets having similar sizes will produce similar output from the NDT equipment. This is especially important for amorphous targets like corrosion damage or buried inclusions with a significant chemical reaction zone. Other literature on NDT data reliability is given elsewhere (2-7).NOTE 14: AE as generally practiced does not yield the size of a flaw in a metallic liner of a COPV; however, can be used for accept-reject of COPVs (see Section 7 in both this guide and Guide E2981).4.14 Further Guidance—Additional guidance for fracture control is provided in other governmental documents (NASA-STD-5003, SSP 30558, SSP 52005, NSTS 1700.7B), and non-government documents (NTIAC-DB-97-02, NTIAC-TA-00-01).1.1 This guide discusses current and potential nondestructive testing (NDT) procedures for finding indications of discontinuities in thin-walled metallic liners in filament-wound pressure vessels, also known as composite overwrapped pressure vessels (COPVs). In general, these vessels have metallic liner thicknesses less than 2.3 mm (0.090 in.), and fiber loadings in the composite overwrap greater than 60 percent by weight. In COPVs, the composite overwrap thickness will be of the order of 2.0 mm (0.080 in.) for smaller vessels, and up to 20 mm (0.80 in.) for larger ones.1.2 This guide focuses on COPVs with nonload sharing metallic liners used at ambient temperature, which most closely represents a Compressed Gas Association (CGA) Type III metal-lined COPV. However, it also has relevance to (1) monolithic metallic pressure vessels (PVs) (CGA Type I), and (2) metal-lined hoop-wrapped COPVs (CGA Type II).1.3 The vessels covered by this guide are used in aerospace applications; therefore, examination requirements for discontinuities and inspection points will in general be different and more stringent than for vessels used in non-aerospace applications.1.4 This guide applies to (1) low pressure COPVs and PVs used for storing aerospace media at maximum allowable working pressures (MAWPs) up to 3.5 MPa (500 psia) and volumes up to 2000 L (70 ft3), and (2) high pressure COPVs used for storing compressed gases at MAWPs up to 70 MPa (10  000 psia) and volumes down to 8 L (500 in.3). Internal vacuum storage or exposure is not considered appropriate for any vessel size.NOTE 1: Some vessels are evacuated during filling operations, requiring the tank to withstand external (atmospheric) pressure.1.5 The metallic liners under consideration include, but are not limited to, ones made from aluminum alloys, titanium alloys, nickel-based alloys, and stainless steels. In the case of COPVs, the composites through which the NDT interrogation should be made after overwrapping include, but are not limited to, various polymer matrix resins (for example, epoxies, cyanate esters, polyurethanes, phenolic resins, polyimides (including bismaleimides), polyamides) with continuous fiber reinforcement (for example, carbon, aramid, glass, or poly-(phenylenebenzobisoxazole) (PBO)).1.6 This guide describes the application of established NDT procedures; namely, Acoustic Emission (AE, Section 7), Eddy Current Testing (ET, Section 8), Laser Profilometry (LP, Section 9), Leak Testing (LT, Section 10), Penetrant Testing (PT, Section 11), and Radiographic Testing (RT, Section 12). These procedures can be used by cognizant engineering organizations for detecting and evaluating flaws, defects, and accumulated damage in metallic PVs, the bare metallic liner of COPVs before overwrapping, and the metallic liner of new and in-service COPVs.1.7 All methods discussed in this guide (AE, ET, LP, LT, PT, and RT) are performed on the metallic liner of COPVs before or after overwrapping and structural cure. The same methods may also be performed on metal PVs. For NDT procedures for detecting discontinuities in the composite overwrap in filament wound pressure vessels; namely, AE, ET, Shearography Testing (ST), RT, Ultrasonic Testing (UT) and Visual Testing (VT); consult Guide E2981.1.8 Due to difficulties associated with inspecting thin-walled metallic COPV liners through composite overwraps, and the availability of the NDE methods listed in 1.6 to inspect COPV liners before overwrapping and metal PVs, ultrasonic testing (UT) is not addressed in this standard. UT may still be performed as agreed upon between the supplier and customer. Ultrasonic requirements may utilize Practice E2375 as applicable based upon the specific liner application and metal thickness. Alternate ultrasonic inspection methods such as Lamb wave, surface wave, shear wave, reflector plate, etc. may be established and documented per agreed upon contractual requirements. The test requirements should be developed in conjunction with the specific criteria defined by engineering analysis.1.9 In general, AE and PT are performed on the PV or the bare metallic liner of a COPV before overwrapping (in the case of COPVs, AE is done before overwrapping to minimize interference from the composite overwrap). ET, LT, and RT are performed on the PV, bare metallic liner of a COPV before overwrapping, or on the as-manufactured COPV. LP is performed on the inner and outer surfaces of the PV, or on the inner surface of the COPV liner both before and after overwrapping. Furthermore, AE and RT are well suited for evaluating the weld integrity of welded PVs and COPV liners.1.10 Wherever possible, the NDT procedures described should be sensitive enough to detect critical flaw sizes of the order of 1.3 mm (0.050 in.) length with a 2:1 aspect ratio.NOTE 2: Liners often fail due to improper welding resulting in initiation and growth of multiple small discontinuities of the order of 0.050 mm (0.002 in.) length. These will form a macro-flaw of 1-mm (0.040-in.) length only at higher stress levels.1.11 For NDT procedures that detect discontinuities in the composite overwrap of filament-wound pressure vessels (namely, AE, ET, shearography, thermography, UT and visual examination), consult Guide E2981.1.12 In the case of COPVs which are impact damage sensitive and require implementation of a damage control plan, emphasis is placed on NDT procedures that are sensitive to detecting damage in the metallic liner caused by impacts at energy levels which may or may not leave any visible indication on the COPV composite surface.1.13 This guide does not specify accept/reject criteria (4.10) used in procurement or used as a means for approving PVs or COPVs for service. Any acceptance criteria provided herein are given mainly for purposes of refinement and further elaboration of the procedures described in the guide. Project or original equipment manufacturer (OEM) specific accept/reject criteria should be used when available and take precedence over any acceptance criteria contained in this document.1.14 This guide references established ASTM test methods that have a foundation of experience and that yield a numerical result, and newer procedures that have yet to be validated which are better categorized as qualitative guidelines and practices. The latter are included to promote research and later elaboration in this guide as methods of the former type.1.15 To ensure proper use of the referenced standard documents, there are recognized NDT specialists that are certified according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any thin-walled metallic component design, quality assurance, in-service maintenance, or damage examination.1.16 Units—The values stated in metric units are to be regarded as the standard. The English units given in parentheses are provided for information only.1.17 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.18 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
54 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页