微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

A written test method is subjected to an ILS to evaluate its performance. The ILS produces a set of statistical estimates that depend upon the method, but also are influenced by the laboratories and test materials involved in the study. For that reason, the ILS task group must interpret these estimates, aided by this guide and using analytical judgment, to decide if the method is suitable to be balloted for publication as a standard. The task group may use this guide to help them prepare the precision and bias statements that are a required part of the method.1.1 This guide covers procedures to help a task group interpret interlaboratory study (ILS) statistics to state precision and accuracy of a test method and make judgments concerning its range of use.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This practice describes procedures applicable to both shop and field conditions. More comprehensive or precise measurements of the characteristics of complete systems and their components will generally require laboratory techniques and electronic equipment such as oscilloscopes and signal generators. Substitution of these methods is not precluded where appropriate; however, their usage is not within the scope of this practice.5.2 This document does not establish system acceptance limits, nor is it intended as a comprehensive equipment specification.5.3 While several important characteristics are included, others of possible significance in some applications are not covered.5.4 Since the parameters to be evaluated and the applicable test conditions must be specified, this practice shall be prescribed only by those familiar with ultrasonic NDT technology and the required tests shall be performed either by such a qualified person or under his supervision.5.5 Implementation may require more detailed procedural instructions in the format of the using facility.5.6 In the case of evaluation of a complete system, selection of the specific tests to be made should be done cautiously; if the related parameters are not critical in the intended application, then their inclusion may be unjustified. For example, vertical linearity may be irrelevant for a go/no-go test with a flaw gate alarm, while horizontal linearity might be required only for accurate flaw-depth or thickness measurement from the display screen.5.7 No frequency of system evaluation or calibration is recommended or implied. This is the prerogative of the using parties and is dependent on application, environment, and stability of equipment.5.8 Certain sections are applicable only to instruments having receiver gain controls calibrated in decibels (dB). While these may sometimes be designated “gain,” “attenuator,” or “sensitivity” on various instruments, the term “gain controls” will be used in this practice in referring to those which specifically control instrument receiver gain but not including reject, electronic distance-amplitude compensation, or automatic gain control.5.9 These procedures can generally be applied to any combination of instrument and search unit of the commonly used types and frequencies, and to most straight-beam examination, either contact or immersed. Certain sections are also compatible with angle-beam, wheel, delay-line, and dual-search unit techniques. Their use, however, should be mutually agreed upon and so identified in the test report.5.10 The validity of the results obtained will depend on the precision of the instrument display readings. This is assumed to be ±0.04 in. (±1 mm), yielding between 1 % and 2 % of full scale (fs) readability for available instrumentation having suitable screen graticules and display sharpness.1.1 This practice describes procedures for evaluating the following performance characteristics of ultrasonic pulse-echo examination instruments and systems: Horizontal Limit and Linearity; Vertical Limit and Linearity; Resolution - Entry Surface and Far Surface; Sensitivity and Noise; Accuracy of Calibrated Gain Controls. Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this practice are expressed in terms that relate to their potential usefulness for ultrasonic testing. Instrument characteristics expressed in purely electronic terms may be measured as described in Guide E1324.1.2 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated.1.3 The procedures are applicable to shop or field conditions; additional electronic measurement instrumentation is not required.1.4 This practice establishes no performance limits for examination systems; if such acceptance criteria are required, these must be specified by the using parties. Where acceptance criteria are implied herein, they are for example only and are subject to more or less restrictive limits imposed by customer's and end user's controlling documents.1.5 The specific parameters to be evaluated, conditions and frequency of test, and report data required must also be determined by the user.1.6 This practice may be used for the evaluation of a complete examination system, including search unit, instrument, interconnections, fixtures and connected alarm and auxiliary devices, primarily in cases where such a system is used repetitively without change or substitution. This practice is not intended to be used as a substitute for calibration or standardization of an instrument or system to inspect any given material. There are limitations to the use of standard reference blocks for that purpose.21.7 Required test apparatus includes selected test blocks and a precision external attenuator (where specified) in addition to the instrument or system to be evaluated.1.8 Precautions relating to the applicability of the procedures and interpretation of the results are included.1.9 Alternate procedures, such as examples described in this document, or others, may only be used with customer approval.1.10 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification deals with the standard structural quality of high-strength low-alloy nickel, copper, phosphorus steel H-piles and sheet piling for use in the construction of dock walls, bulkheads, excavations, and like applications in marine environments. The steel shall be semi-killed or killed and shall be exposed to the washing action of rain and the drying action of wind or sun, or both to determine its atmospheric corrosion resistance. Material specimens shall undergo product analysis, heat analysis, and tension testing and shall conform to the required chemical composition, tolerance, tensile strength, yield point, and elongation specifications.1.1 This specification covers high-strength low-alloy nickel, copper, phosphorus steel H-piles and sheet piling of structural quality for use in the construction of dock walls, sea walls, bulkheads, excavations, and like applications in marine environments.1.2 The atmospheric corrosion resistance of this steel is substantially better than that of ordinary carbon steels with or without copper addition (see Note 1). The steel has also shown to have substantially greater resistance to seawater “Splash Zone” corrosion than ordinary carbon steel (Specifications A36/A36M and A328/A328M) where exposed to the washing action of rain and the drying action of the wind or sun, or both. Where the steel is not boldly exposed, the usual provisions for the protection of ordinary carbon steel should be considered.NOTE 1: For methods of estimating atmospheric corrosion resistance of low-alloy steels, see Guide G101.1.3 When the steel is to be welded, it is presupposed that a welding procedure suitable for the grade of steel and intended use or service will be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.1.4 The values stated in either inch-pound units or SI units are to be regarded as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

A standard recognizes that effectiveness, safety, and durability of a RBS depends not only on the quality of the materials, but also on their proper installation.Improper installation of a RBS can reduce their thermal effectiveness, cause fire risks and other unsafe conditions, and promote deterioration of the structure in which they are installed. Specific hazards that can result from improper installation include fires caused by (1) heat buildup in recessed lighting fixtures, (2) deterioration or failure of electrical wiring components, and (3) deterioration in wood structures and paint failure due to moisture accumulation.This standard provides recommendations for the installation of radiant barrier materials in a safe and effective manner. Actual conditions in existing buildings may vary greatly and in some cases additional care should be taken to ensure safe and effective installation.This standard presents requirements that are general in nature and considered practical. They are not intended as specific recommendations. The user should consult the manufacturer for recommended application methods.1.1 This standard has been prepared for use by the designer, specifier, and installer of RBS (radiant barrier systems) for use in building construction. The scope is limited to recommendations relative to the use and installation of RBS including a surface(s) normally having a far-infrared emittance of 0.1 or less, such as metallic foil or metallic deposits unmounted or mounted on substrates. Some examples that this standard is intended to address include: (1) low emittance surfaces in vented or unvented building envelope cavities intended to retard radiant transfer across the airspace; (2) low emittance surfaces at interior building surfaces intended to retard radiant transfer to or from building inhabitants; and (3) low emittance surfaces at interior building surfaces intended to reduce radiant transfer to or from radiant heating or cooling systems. See for typical examples of use.1.2 This standard covers the installation process from pre-installation inspection through post-installation procedure. It does not cover the production of the radiant barrier materials. (See Specification C1313.)1.3 This standard is not intended to replace the manufacturer's installation instructions, but shall be used in conjunction with such instructions. This practice is not intended to supercede local, state, or federal codes.1.4 This standard assumes that the installer possesses a good working knowledge of the application codes and regulations, safety practices, tools, equipment, and methods necessary for the installation of radiant barrier materials. It also assumes that the installer understands the fundamentals of building construction that affect the installation of RBS.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Sections and .1.5 When the installation or use of radiant barrier materials, accessories and systems, may pose safety or health problems, the manufacturer shall provide the user appropriate current information regarding any known problems associated with the recommended use of the company's products and shall also recommend protective measures to be employed in their safe utilization. The user shall establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Walls, ceilings, and floors in building construction with improperly sealed joints, voids, or penetrations will not achieve the desired sound transmission loss. Proper sealing of joints, voids, and penetrations will increase sound transmission loss by reducing airborne sound flanking paths.1.1 This practice provides information for the use of sealants to reduce sound transmission characteristics of interior walls, ceilings, and floors by proper application of sealants to joints, voids, and penetrations normally found in building construction, which are commonly referred to as airborne sound flanking paths.1.2 The committee with jurisdiction over this standard is not aware of any comparable standards published by other organizations.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address fire stopping or safing requirements for joints, voids, and penetrations through fire-rated wall, ceiling, and floor assemblies. Additional requirements may be necessary for fire-rated assemblies to meet the applicable building code provisions.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This specification covers a coextruded polyethylene composite pressure pipe with a butt welded aluminum tube reinforcement between the inner and outer layers. The inner and outer polyethylene layers are bonded to the aluminum tube by a melt adhesive. Included is a system of nomenclature for the polyethylene-aluminum-polyethylene of raised temperature (PE-RT/AL/PE-RT) pipes, the requirements and test methods for materials, the dimensions and strengths of the component tubes and finished pipe, adhesion tests, and the burst and sustained pressure performance. Also given are the requirements and methods of marking. The pipe covered by this specification is intended for use in air conditioning and refrigeration (ACR) line set systems.1.2 This specification relates only to composite pipes incorporating a butt welded aluminum tube having both internal and external polyethylene layers. The welded aluminum tube is capable of sustaining internal pressures. Pipes consisting of metallic layers not butt welded together and plastic layers other than polyethylene are outside the scope of this specification.1.3 The dimensions in this specification are ID controlled to match that of ACR Copper Tube so that the flowrate and volume remains the same on a size-for-size basis.1.4 Specifications for fittings for use with pipe meeting the requirements of this specification are given in Annex A1.1.5 This specification excludes crosslinked polyethylene-aluminum-crosslinked polyethylene pipes (see Specification F1281).1.6 This specification tests the pipe for service at 60 °C ± 2 °C (140 °F ± 3 °F) or 82 °C ± 2 °C (180 °F ± 3 °F).1.7 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

A lithium fluoride (LiF)-based photo-fluorescent film dosimetry system provides a means of determining absorbed dose to materials by the photo-stimulated emission of wavelengths longer than that of the stimulation wavelength. The absorbed dose is obtained from the amount of the light emission. Imperfections within the ionic lattice of alkali-halide compounds such as LiF act as traps for electrons and electron holes (positively charged negative-ion vacancies). These imperfections are known as color centers because of the part they play in the compound's ability to absorb and then release energy in the form of visible-light photons. Like an atom, these color centers have discrete, allowed energy levels, and electrons can be removed from these sites when energy of the appropriate wavelength and intensity is transferred to the material. The resulting fluorescence spectra contain discrete peaks that can cover a range of wavelengths, depending upon the type of alkali-halide (8). An example of fluorescence spectra from a LiF-based dosimeter is provided in Fig. 1. A system of optical filters within a light-detecting instrument (that is, fluorimeter) can be used to block all but a narrow range of wavelengths that are desired for use. Theories on how color centers are formed, how luminescence mechanisms work, and their application in dosimetry are found in Refs (8-13). For characterization studies on specific photo-fluorescent dosimeters see Refs (1-7) and (14-19).In the application of a specific dosimetry system, absorbed dose is determined by use of an experimentally-derived calibration curve. The calibration curve for the photo-fluorescent dosimeter is the functional relationship between ΔEf and D, and is determined by measuring the net fluorescence of sets of dosimeters irradiated to known absorbed doses. These absorbed doses span the range of utilization of the system.Photo-fluorescent dosimetry systems require calibration traceable to national standards. See ISO/ASTM Guide .The absorbed dose is usually specified relative to water. Absorbed dose in other materials may be determined by applying the conversion factors discussed in ISO/ASTM Guide .During calibration and use, possible effects of influence quantities such as temperature, light exposure, post-irradiation stabilization of signal, and absorbed-dose rate need to be taken into account.Photo-fluorescent dosimeters are sensitive to light, especially during irradiation and post-irradiation stabilization (7). Some color centers are sensitive to the UV and blue regions of the spectrum, while other centers are only sensitive to the UV. Therefore, they need to be packaged in appropriate light-tight packaging shortly after manufacture, and during use they need to be packaged or the appropriate filters placed over room lighting. Filtering the light fixtures involved during irradiation may be required for irradiations using low-energy X-rays or electrons where unpackaged dosimeters are used.The signal from photo-fluorescent dosimeters either increases or decreases with time following irradiation, depending on the color center utilized (19). This stabilization process, which can last from hours to days depending on storage temperature (and dose for some color centers) can be accelerated and stabilized by heat treating the dosimeters after irradiation and before readout (see 9.2).Note—Also shown are transmission curves for green and red emission filters.FIG. 1 Excitation Spectrum and Resulting Fluorescence Spectrum from the Sunna LiF-based Film Dosimeter1.1 This practice covers the handling, testing, and procedure for using a lithium fluoride (LiF)-based photo-fluorescent film dosimetry system to measure absorbed dose (relative to water) in materials irradiated by photons or electrons. Other alkali halides that may also exhibit photofluorescence (for example, NaCl, NaF, and KCl) are not covered in this practice. Although various alkali halides have been used for dosimetry for years utilizing thermoluminescence, the use of photoluminescence is relatively new.1.2 This practice applies to photo-fluorescent film dosimeters (referred hereafter as photo-fluorescent dosimeters) that can be used within part or all of the following ranges:1.2.1 Absorbed dose range of 5 × 10-2 to 3 × 102 kGy (1-3).1.2.2 Absorbed dose rate range of 0.3 to 2 × 104 Gy/s (2-5)).1.2.3 Radiation energy range for photons of 0.05 to 10 MeV (2).1.2.4 Radiation energy range for electrons of 0.1 to 10 MeV (2).1.2.5 Radiation temperature range of -20 to +60°C (6,7).1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 These methods are intended to determine whether a material, product, or part of a product has the degree of radiopacity desired for its application as a medical device in the human body. This method allows for comparison with or without the use of a body mimic. Comparisons without the use of a body mimic should be used with caution as the relative radiopacity can be affected when imaging through the human body.5.2 These methods allow for both qualitative and quantitative evaluation in different comparative situations.1.1 These test methods cover the determination of the radiopacity of materials and products utilizing X-ray based techniques, including fluoroscopy, angiography, CT (computed tomography), and DEXA (dual energy X-ray absorptiometry), also known as DXA, The results of these measurements are an indication of the likelihood of locating the product within the human body.1.2 Radiopacity is determined by (a) qualitatively comparing image(s) of a test specimen and a user-defined standard, with or without the use of a body mimic; or (b) quantitatively determining the specific difference in optical density or pixel intensity between the image of a test specimen and the image of a user-defined standard, with or without the use of a body mimic.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This guide covers recommendations for the use of chemical dispersants to assist in the control of oil spills. This guide is written with the goal of minimizing the environmental impacts of oil spills; this goal is the basis upon which recommendations are made. Aesthetic and socioeconomic factors are not considered; although, these and other factors are often important in spill response. 1.2 Each on-scene coordinator has available several means of control or cleanup of spilled oil. In this guide, use of chemical dispersants is not to be considered as a last resort after other methods have failed. Chemical dispersants are to be given equal consideration with other spill countermeasures. 1.3 This is a general guide only assuming the oil to be dispersable and the dispersant to be effective, available, applied correctly and in compliance with relevant government regulations. Oil, as used in this guide, includes crude oils and fuel oils (No. 1 through No. 6). Differences between individual dispersants or between different oils or products are not considered. 1.4 This guide covers one type of habitat, sandy beaches or marshes. Other guides, similar to this one, cover habitats such as rocky shores and marshes. The use of dispersants is considered primarily to protect such habitats from impact (or minimize impacts) and also to clean them after the spill takes place. 1.5 This guide applies to marine and estuarine environments, but not to freshwater environments. 1.6 In making dispersant-use decisions, appropriate government authorities should be consulted as required by law. 1.7 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This specification covers Grades 50 [345] and 65 [450] alloy steel "W" shapes (rolled wide flange shapes) intended for use in building framing. This steel is a low carbon, copper-containing, alloy steel with a bainitic microstructure that is developed through the control of chemical composition and the use of thermo-mechanical rolling followed by air cooling. The copper is present to enhance precipitation strengthening.1.2 When the steel is to be welded, a welding procedure suitable for the grade of steel and intended use or service is to be utilized. See Appendix X3 of Specification A 6/A 6M for information on weldability.1.3 The shapes are not intended to be galvanized or to be post-weld heat treated at temperatures exceeding 750 °F [400 °C].1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI values are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system is to be used independently of the other, without combining values in any way.1.5 The text of this specification contains notes or footnotes, or both, that provide explanatory material; such notes and footnotes, excluding those in tables and figures, do not contain any mandatory requirements.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Insulating materials are used to isolate components of an electrical system from each other and from ground, as well as to provide mechanical support for the components. For this purpose, it is generally desirable to have the insulation resistance as high as possible, consistent with acceptable mechanical, chemical, and heat-resisting properties. Since insulation resistance or conductance combines both volume and surface resistance or conductance, its measured value is most useful when the test specimen and electrodes have the same form as is required in actual use. Surface resistance or conductance changes rapidly with humidity, while volume resistance or conductance changes slowly although the final change may eventually be greater.4.2 Resistivity or conductivity is used to predict, indirectly, the low-frequency dielectric breakdown and dissipation factor properties of some materials. Resistivity or conductivity is often used as an indirect measure of moisture content, degree of cure, mechanical continuity, and deterioration of various types. The usefulness of these indirect measurements is dependent on the degree of correlation established by supporting theoretical or experimental investigations. A decrease of surface resistance will result either in an increase of the dielectric breakdown voltage because the electric field intensity is reduced, or a decrease of the dielectric breakdown voltage because the area under stress is increased.4.3 All the dielectric resistances or conductances depend on the length of time of electrification and on the value of applied voltage (in addition to the usual environmental variables). These must be known to make the measured value of resistance or conductance meaningful.4.4 Volume resistivity or conductivity is used as an aid in designing an insulator for a specific application. The change of resistivity or conductivity with temperature and humidity may be great, and must be known when designing for operating conditions. Volume resistivity or conductivity determinations are often used in checking the uniformity of an insulating material, either with regard to processing or to detect conductive impurities that affect the quality of the material and that may not be readily detectable by other methods.4.5 Volume resistivities above 1021 Ω·cm (1019 Ω·m), obtained on specimens under usual laboratory conditions, are of doubtful validity, considering the limitations of commonly used measuring equipment.4.6 Surface resistance or conductance cannot be measured accurately, only approximated, because some degree of volume resistance or conductance is always involved in the measurement. The measured value is also affected by the surface contamination. Surface contamination, and its rate of accumulation, is affected by many factors including electrostatic charging and interfacial tension. These, in turn, may affect the surface resistivity. Surface resistivity or conductivity can be considered to be related to material properties when contamination is involved but is not a material property in the usual sense.1.1 These test methods cover procedures for testing adhesives in liquid, highly viscous, solid, or set states, that are intended to be cured by electronic heating, or that are intended to provide electrical insulation, or that are intended for use in electrical apparatus.1.2 The procedures appear in the following order:(1) Procedure for Testing Adhesives Before Use:  SectionPower Factor and Dielectric Constant of Liquid Adhesives  7Direct-Current Conductivity  8Extract Conductivity  9Acidity and Alkalinity 10pH Value 11(2) Procedures for Testing Properties of Adhesives As Used:  SectionPower Factor and Dielectric Constant of a Dried or Cured Adhesive  Film  12Dielectric Strength 13Volume and Surface Resistivity 14Arc Resistance 151.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see 8.2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D8530/D8530M-23 Standard Guide for the Selection and Use of Waterstops Active 发布日期 :  1970-01-01 实施日期 : 

4.1 This guide is intended to be used in the selection and installation of waterstops in cast-in-place concrete construction. This guide is intended to assist the building owner, owner’s representative, architect, engineer, contractor, and/or authorized inspector during the specification and installation of waterstops.4.2 This guide is applicable to cast-in-place concrete construction. The use of this guide may not be appropriate for installation of waterstops in other types of concrete construction, including but not limited to, pneumatically applied (that is, shotcrete) and precast concrete construction.1.1 This guide covers the use of waterstops within cast-in-place concrete construction. Waterstops are generally placed within static, non-moving construction joints in concrete to close off the joint to water, which may be under significant hydrostatic pressure. They are used as part of the overall waterproofing strategy for a building or other structure. Expansion and other types of moving joints may require the use of waterstops, which can accommodate the anticipated movement of the structure and are beyond the scope of this guide.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Part A of the “Blue Book,” Form and Style for ASTM Standards, requires that all test methods include statements of precision and bias. This practice discusses these two concepts and provides guidance for their use in statements about test methods.4.2 Precision—A statement of precision allows potential users of a test method to assess in general terms the test method’s usefulness with respect to variability in proposed applications. A statement of precision is not intended to exhibit values that can be exactly duplicated in every user’s laboratory. Instead, the statement provides guidelines as to the magnitude of variability that can be expected between test results when the method is used in one, or in two or more, reasonably competent laboratories. For a discussion of precision, see 8.1.4.3 Bias—A statement of bias furnishes guidelines on the relationship between a set of typical test results produced by the test method under specific test conditions and a related set of accepted reference values (see 9.1).4.3.1 An alternative term for bias is trueness, which has a positive connotation, in that greater bias is associated with less favorable trueness. Trueness is the systematic component of accuracy.4.4 Accuracy—The term “accuracy,” used in earlier editions of Practice E177, embraces both precision and bias (see 9.3).AbstractThe purpose of this practice is to present concepts necessary to the understanding of the terms “precision” and “bias” as used in quantitative test methods. This practice also describes methods of expressing precision and bias and, in a final section, gives examples of how statements on precision and bias may be written for ASTM test methods. A statement of precision allows potential users of a test method to assess in general terms the test method’s usefulness with respect to variability in proposed applications.1.1 The purpose of this practice is to present concepts necessary to the understanding of the terms “precision” and “bias” as used in quantitative test methods. This practice also describes methods of expressing precision and bias and, in a final section, gives examples of how statements on precision and bias may be written for ASTM test methods.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification provides the requirements for mattresses and box springs that are for use in berths for officers, crew, and passengers in marine vessels. This shall be considered a minimum standard. Tearing strength, breaking strength, elongation, and flame resistance of the material shall be tested to meet the requirements prescribed.1.1 This specification provides the requirements for mattresses and box springs that are for use in berths for officers, crew, and passengers in marine vessels. This shall be considered a minimum standard.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.1.4 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Acoustical materials are often used as the entire ceiling of rooms and are therefore an important component of the lighting system. The luminous reflectance of all important components must be known in order to predict the level of illumination that will be obtained.5.2 The reflecting properties of a surface are measured relative to those of a standard reflector, the perfect reflecting diffuser, to provide a reflectance factor. The luminous reflectance factor is calculated for a standard illuminant, and a standard observer, for the standard hemispherical (integrating-sphere) geometry of illumination and viewing, in which all reflected radiation from an area of the surface is collected. In this way the reflecting properties of an acoustical material can be represented by a single number measured and calculated under standard conditions.5.3 Acoustical materials generally have a non-glossy white or near-white finish. The types of surface cover a wide range from smooth to deeply fissured. Measurement with integrating-sphere reflectometers has been satisfactory although multiple measurements may be required to sample the surface adequately. Instruments with other types of optical measuring systems may be used if it can be demonstrated that they provide equivalent results.5.4 The use of this test method for determining the luminous reflectance factor is required by Classification E1264.1.1 This test method covers the measurement of the luminous reflectance factor of acoustical materials for use in predicting the levels of room illumination.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
545 条记录,每页 15 条,当前第 1 / 37 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页