微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers two types of asbestos-containing asphalt roof coatings consisting of an asphalt base, volatile petroleum solvents, and mineral stabilizers including asbestos fiber, mixed to a smooth, uniform consistency suitable for application by squeegee, three-knot brush, paint brush, roller, or by spraying. Type I is made from asphalts characterized as self-healing, adhesive, and ductile, while Type II is made from asphalts characterized by high softening point and relatively low ductility. The coatings shall comply with specified composition limits of water, nonvolatile matter, asbestos and other mineral stabilizers, asphalt, and mineral matter based on original mass of insoluble residue. They shall also adhere to physical requirements as to uniformity, consistency, and pliability and behavior at given temperatures.1.1 This specification covers asbestos-containing asphalt roof coatings of brushing or spraying consistency.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method specifies the determination of the microhardness of metallic coatings upon various substrates (electroplated coatings). Measurements shall be made with the Knoop indenter under specified test loads, and the hardness shall be reported as a Knoop hardness number (HK).1.1 This test method covers the determination of the hardness of metallic coatings upon various substrates. The measurements are made with the Knoop indenter under a test load of 0.245 N (25 gf) or 0.981 N (100 gf).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers three types of aluminum-pigmented asphalt roof coatings suitable for application to roofing or masonry surfaces by brush or spray. Type I is nonfibered, Type II is fibered with asbestos, and Type III is fibered other than asbestos. The coatings shall adhere to chemical requirements such as composition limits for water, nonvolatile matter, metallic aluminum, and insolubility in CS2. They shall also meet physical requirements as to uniformity, consistency, and luminous reflectance.1.1 This specification covers asphalt-based, aluminum-pigmented roof coatings suitable for application to roofing or masonry surfaces by brush or spray.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 The following precautionary caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification prescribes the performance criteria for strippable/removable coatings used in immobilizing radioactive contamination, minimizing worker exposure, and facilitating subsequent decontamination or protecting uncontaminated areas against the spread of radioactive contamination. It covers the minimum performance requirements (shelf life, tensile strength, adhesion, abrasion resistance, dry/cure time, decontamination factor, airborne release fraction) as well as the mechanical and chemical properties for strippable/removable coatings. The strippable/removable coating is intended to reduce: migration of the radioactive contamination into or along buildings, equipment, and other surfaces; resuspension of contamination into the air and the airborne intake hazards of the contamination; and the spread of contamination as a result of external forces such as pedestrian traffic. The strippable/removable coating shall: be applicable to both vertical and horizontal surfaces; work within a range of environmental and radiological conditions; and be readily applied to both porous and nonporous materials such as concrete, wood, metal, ceramics, and plastics. Furthermore, the strippable/removable coating may include constituents that will physically or chemically bind and immobilize radioactive contamination.1.1 This specification is intended to provide a basis for identification of strippable/removable materials used to immobilize radioactive contamination, minimize worker exposure, and facilitate subsequent decontamination or to protect uncontaminated areas against the spread of radioactive contamination.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant. These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.1.1 This specification covers the basic requirements for chromium-free fastener coatings that combine an inorganic zinc-rich basecoat with an aluminum-rich topcoat that contains an integrated lubricant.1.2 These coatings are applied by conventional dip-spin, dip-drain, or spray methods to ferrous parts which can be handled through a cleaning, or phosphate, coating, and baking operation. Phosphating or shot blast is required to clean and prepare the surface of the steel. These coatings are bake cured at temperatures up to 500°F.NOTE 1: If used, phosphate to be used in accordance with Specification F1137, grade 0.1.3 Units—The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The performance and quality of electroplated or conversion-coated zinc alloy die casting depends upon the surface cleanliness and condition. Various metals are electroplated or conversion coatings are established on zinc alloys for decorative or engineering finish. The common electroplates applied are usually copper, nickel, and chromium for decorative and functional uses. The common conversion coatings applied are phosphates, chromates, and anodized coatings. Electroplated zinc die castings and conversion coatings on zinc die castings are used in many industries such as the marine, automotive, plumbing fixtures, and appliance industries.1.1 This guide is intended as an aid in establishing and maintaining a procedure for preparing zinc alloy die castings for electroplating and conversion coatings. It is primarily intended for the preparation of Alloys UNS Z33521 (AG-40A) and UNS Z35530 (AC-41A) (Specification B86) for electroplating with copper, nickel, and chromium (Specification B456).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification establishes the requirements for mat, bright, and flow-brightened electrodeposited tin-lead alloy coatings on fabricated articles of iron, steel, copper, and copper alloys to protect them against corrosion, to improve and preserve solderability over long periods of storage, and to improve anti-galling characteristics. Sheets, strips, or wires in the unfabricated form, or threaded articles having a specified diameter, are not covered here. The classification notation shall include the type of basis metal, thickness of tin-lead coating required, service condition number indicating the severity of service required, and coating composition. Coatings shall be sampled, tested, and shall conform accordingly to specified requirements as to composition, appearance, thickness, adhesion (to be examined either by burnishing test, quenching test, reflow test, or bend test), and solderability (to be assessed either by non-automated or automated dip test, spread test, globule test, or artificial aging test).1.1 This specification covers the requirements for electrodeposited tin-lead coatings on fabricated articles of iron, steel, copper, and copper alloys, to protect them against corrosion (Note 1), to improve and preserve solderability over long periods of storage, and to improve anti-galling characteristics.NOTE 1: Some corrosion of tin-lead coatings may be expected in outdoor exposure. In normal indoor exposure, tin-lead is protective on iron, copper, and copper alloys. Corrosion may be expected at discontinuities (pits or pores) in the coating. Porosity decreases as the thickness is increased. A primary use of the tin-lead coating (solder) is with the printed circuit industry as a solderable coating and as an etch mask material.1.2 This specification applies to electrodeposited coatings containing a minimum of 50 % and a maximum of 70 % tin. The specification applies to mat, bright, and flow-brightened tin-lead coatings.NOTE 2: Tin-lead plating baths are composed of tin and lead fluoborates and of addition agents to promote stability. The final appearance may be influenced by the addition of proprietary brighteners. Without brighteners, the coatings are mat; with brighteners, they are semibright or bright. Flow-brightened coatings are obtained by heating mat coatings to above the melting point of tin-lead for a few seconds and then quenching; palm oil, hydrogenated oils, or fats are used as a heat-transfer medium at a temperature of 260 ± 10 °C (500 ± 20 °F), but other methods of heating are also in use. The maximum thickness for flow-brightening is about 7.5 μm (0.3 mil); thicker coatings tend to reflow unevenly. The shape of the part is also a factor; flat surfaces tend to reflow more unevenly than wires or rounded shapes (Note 3).NOTE 3: Volatile impurities in tin-lead coatings will cause bubbling and foaming during flow-brightening resulting in voids and roughness. The impurities can arise from plating solution addition agents and from improper rinsing and processing.1.3 This specification does not apply to sheet, strip, or wire in the unfabricated form or to threaded articles having basic major diameters up to and including 19 mm (0.75 in.).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Asphalt-based, solvent-type, fibered or nonfibered, aluminum-pigmented roof coatings are used as a protective coating for solar reflection to prolong the life of roofing materials or where decorative qualities are desired.3.2 Suitable application of aluminum-pigmented asphalt roof coatings is an important factor in achieving a successful long-term coating. Suitable application is, in part, dependent upon appropriate specifications to guide the work. This guide can be useful in facilitating development of an appropriate specification for surface preparation and application of the roof coating.3.3 Designers/specifiers of coatings may use this guide in preparing the application portion of their specification. Contractors working directly for the building owner may also use this guide.3.4 This guide is not all-inclusive. Manufacturer's application instructions should be consulted and geographical “area practices” considered. Consult membrane manufacturer and coating manufacturer for acceptability of procedures and products.1.1 This guide covers the application methods for Specification D2824/D2824M Aluminum-Pigmented Asphalt Roof Coatings, Nonfibered, and Fibered without Asbestos, for application on asphalt built-up roof membranes, modified bitumen roof membranes, bituminous base flashings, concrete surfaces, metal surfaces, emulsion coatings, and solvent-based coatings. This guide does not apply to the selection of a specific aluminum-pigmented asphalt roof coating type for use on specific projects. The fibered version of these coatings excludes the use of asbestos fibers.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 4.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification prescribes the performance criteria for non-removable permanent coatings and fixatives as a long-term measure used to immobilize radioactive contamination, minimize worker exposure, and protect uncontaminated areas against the spread of radioactive contamination. It covers the minimum performance requirements (shelf life, adhesion, abrasion resistance, dry/cure time, decontamination factor, airborne release fraction, respirable fraction, radiation resistance) as well as the mechanical and chemical properties for permanent coatings that are intended to immobilize dispersible radioactive contamination deposited on buildings and equipment as might result from anticipated to unanticipated events to include normal operating conditions, decommissioning, and radiological release. The coating is intended to reduce: migration of the contamination into or along buildings, equipment, and other surfaces; resuspension of contamination into the air; and the spread of contamination as a result of external forces such as pedestrian traffic. It shall: be applicable to both vertical and horizontal surfaces; work within a range of environmental and radiological conditions; and be applicable to both porous and nonporous materials such as concrete, wood, metal, ceramics, and plastics. Furthermore, the coating may include constituents that will physically or chemically bind and hold radioactive contamination.1.1 This specification is intended to provide a basis for identification of non-removable permanent coatings and fixatives as a long-term measure used to immobilize radioactive contamination, minimize worker exposure, and to protect uncontaminated areas against the spread of radioactive contamination.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the requirements for porous oxide coatings deposited by electrolysis on aluminum and aluminum alloy parts. These coatings should have good appearance, abrasion resistance, electrical properties, and protection against corrosion and does not include nonporous barrier layer anodic coatings that are used for electrical capacitors. The basis metals for these coatings should be subjected to mechanical finishing operations, cleaning, and chemical or electrolytic pre-treatments to yield coatings with fine quality and appearance. Anodized parts should be sealed in water or aqueous chemical solutions except when otherwise specified. Each anodic coating should be continuous, smooth, adherent, uniform in appearance, and free of powdery areas (burns, loose films, stains, discolorations, and discontinuities.1.1 This specification covers requirements for electrolytically formed porous oxide coatings on aluminum and aluminum alloy parts in which appearance, abrasion resistance, electrical properties, and protection against corrosion are important. Nonporous, barrier layer anodic coatings used for electrical capacitors are not covered. Seven types of coatings as shown in Table 1 are provided. Definitions and typical examples of service conditions are provided in Appendix X1.NOTE 1: It is recognized that uses exist in which modifications of the coatings covered by this specification may be required. In such cases the particular properties desired by the purchaser should be the subject of agreement between the purchaser and the manufacturer.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method is designed to provide a uniform test to assess the suitability of coatings, used in nuclear power facilities, under radiation exposure for the life of the facilities, including radiation during a DBA (Coating Service Level I areas only). Specific plant radiation exposure may exceed or be less than the amount specified in 7.2 of this standard. If required by the licensee design basis, the gamma dose used may exceed the actual anticipated plant gamma dose to account for beta dose. Coatings in Level II and III areas (outside primary containment) are expected to be exposed to lower accumulated radiation doses.1.1 This test method covers a standard procedure for evaluating the lifetime radiation tolerance of coatings to be used in nuclear power plants. This test method is applicable to Coating Service Levels I, II, and III.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the requirements for electrodeposited zinc cobalt alloy coatings on metals. The coating class is Class 1 and five coating types are Type a, Type b, Type c, Type d, and Type e. The metal to be plated shall be subjected to such cleaning, pickling, and electroplating procedures. Coating requirements include: substrate, nature of coating, appearance, thickness, adhesion, corrosion resistance, and pre- and post-coating treatments of iron and steel for reducing the risk of hydrogen embrittlement. Adhesion, porosity, corrosion resistance, or appearance tests shall be made.1.1 This specification covers the requirements for electrodeposited zinc cobalt alloy coatings on metals.1.2 The following precautionary caveat pertains to the test method portion only, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method is intended to provide a means for evaluating the current-voltage cycling stability at 90°C (194°F) of ECWs as described in 1.2.2 ,4 (See Appendix X1, sections X1.4-X1.7.)1.1 This test method covers the accelerated aging and monitoring of the time-dependent performance of electrochromic windows (ECW). Cross sections of typical electrochromic windows have three to five-layers of coatings that include one to three active layers sandwiched between two transparent conducting electrodes (TCEs, see Section ). Examples of the cross-sectional arrangements can be found in "Evaluation Criteria and Test Methods for Electrochromic Windows." (For acronyms used in this standard, see , section ).1.2 This test method is applicable only for layered (one or more active coatings between the TCEs) absorptive electrochromic coatings on sealed insulating glass (IG) units fabricated for vision glass (superstrate and substrate) areas for use in buildings, such as glass doors, windows, skylights, and exterior wall systems. The layers used for electrochromically changing the optical properties may be inorganic or organic materials between the superstrate and substrate.1.3 The electrochromic coatings used in this test method will be subsequently exposed (see Test Methods E 2141) to solar radiation and deployed to control the amount of radiation by absorption and reflection and thus, limit the solar heat gain and amount of solar radiation that is transmitted into the building.1.4 This test method is not applicable to other chromogenic devices, for example, photochromic and thermochromic devices.1.5 This test method is not applicable to electrochromic windows that are constructed from superstrate or substrate materials other than glass.1.6 This test method referenced herein is a laboratory test conducted under specified conditions. This test is intended to simulate and, possibly, to also accelerate actual in-service use of the electrochromic windows. Results from this test cannot be used to predict the performance with time of in-service units unless actual corresponding in-service tests have been conducted and appropriate analyses have been conducted to show how performance can be predicted from the accelerated aging tests.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This test method covers an accelerated procedure for simultaneously determining comparative characteristics of insulating coating systems applied to steel pipe exterior for the purpose of preventing or mitigating corrosion that may occur in underground service where the pipe will be in contact with natural soils and may or may not receive cathodic protection. It is intended for use with samples of coated pipe taken from commercial production and is applicable to such samples when the coating is characterized by function as an electrical barrier. 1.2 This test method is specific with no options. For alternative methods of test see Test Methods G8. 1.3 The values stated in SI units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

The thickness of a coating is often critical to its performance.For some coating-substrate combinations, the interference microscope method is a reliable method for measuring coating thickness.This test method is suitable for specification acceptance.1.1 This test method covers the measurement of the thickness of transparent metal oxide and metallic coatings by utilizing a double-beam interference microscope.1.2 The test method requires that the specimen surface or surfaces be sufficiently mirrorlike to form recognizable fringes.1.3 This test method can be used nondestructively to measure 1 to 10μ m thick transparent coatings, such as anodic coatings on aluminum. The test method is used destructively for 0.1 to 10 μm thick opaque coatings by stripping a portion of the coating and measuring the step height between the coating and the exposed substrate. The stripping method can also be used to measure 0.2 to 10 μm thick anodic coatings on aluminum.1.4 The test method is usable as a reference method for the measurement of the thickness of the anodic film on aluminum or of metallic coatings when the technique includes complete stripping of a portion of the coating without attack of the substrate. For anodic films on aluminum, the thickness must be greater than 0.4 μm; the uncertainty can be as great as 0.2 μm. For metallic coatings, the thickness must be greater than 0.25 μm; the uncertainty can be as great as 0.1 μm.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
322 条记录,每页 15 条,当前第 1 / 22 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页