微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 These test methods provide a means of determining the compatibility of a resin (or vehicle), at low concentrations, in a high boiling ink solvent.5.2 Resin-solvent mixtures that exhibit a high precipitation temperature are less compatible than those exhibiting a low precipitation temperature.5.3 Resin-solvent mixtures that exhibit precipitation temperatures at or close to the cloud point of the pure solvent are considered infinitely compatible or the resin is infinitely soluble in that solvent.1.1 These test methods cover the manual and automatic procedures for testing the compatibility of lithographic ink resins in high boiling ink solvents by precipitation temperature (cloud point) in a range from 35 to 210°C.1.2 The manual procedure in this test method uses laboratory equipment generally available in a normal, well-equipped laboratory. The automated procedure uses a programmable cloud point tester.1.3 This test method is for use with ink resins intended mainly for oil-based offset and letterpress inks. The type of resins are typically, but not limited to C9 aromatic hydrocarbon resins, modified dicyclopentadiene resins, rosin pentaerythritol or glycerol esters, phenolic modified rosin esters, maleic anhydride modified-rosin esters, and naturally occurring resins such as gilsonite.1.4 A resin solution or ink vehicle could also be used in this test instead of the resin.1.5 The typical high boiling solvents to be used are C12 to C16 petroleum distillates.1.6 To avoid fire or injury, this test method should not be used with low flash point solvents such as toluene or xylene. The minimum flash point of the solvents used should be 60°C as determined by Test Method D56.NOTE 1: Users of this test method should be aware that the flash point of many solvents used for this test (as defined in Test Methods D56 and D1310) is exceeded in the heating cycle of this test method. Safety precautions should be taken since there is the potential for vapor ignition. The method outlined should be done in a shielded exhaust hood, where there is access to a fire extinguisher if needed.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 When more than one elastomer seal material is tested, the test methods yield comparative data on which to base judgements as to expected service quality. Suggested in-service property change limits are provided. Property changes beyond these limits will indicate limited service life of the elastomer seal.4.2 These test methods attempt to simulate service conditions through controlled aging and evaluation of property changes but may not give any direct correlations with actual part performance since actual service conditions vary widely. These test methods yield comparative data and indications of property changes of the elastomeric seal material under ideal service conditions. These test methods can be used for quality control purposes, for engineering assessments, for service evaluation, and for manufacturing control. The information from these test methods can be used to anticipate expected service quality.1.1 These test methods cover the procedure for measuring physical properties of elastomer seals in the form of O-rings after exposure to industrial hydraulic fluids and thermal aging. The measured properties are then compared to the physical properties of elastomer seals that have not been exposed to the industrial hydraulic fluids and thermal aging. The changes in these properties form a basis for assessing compatibility when these changes are compared against the suggested limits in Table 1.1.2 While these test methods involve the use of O-rings, they can also be used to evaluate the compatibility of the elastomeric compounds of specialty seals with industrial hydraulic fluids and their resistance to thermal aging. The compounds can be molded into O-rings for evaluation purposes.1.3 These test methods provide procedures for exposing O-ring test specimens to industrial hydraulic fluids under definite conditions of temperature and time. The resulting deterioration of the O-ring material is determined by comparing the changes in work function, hardness, physical properties, compression set, and seal volume after immersion in the test fluid to the pre-immersion values.1.4 The values stated in SI units are to be regarded as the standard.1.4.1 Exception—The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 In the normal use of a way lubricant in a machine tool, the way lubricant eventually becomes a contaminant that may emulsify into the coolant. It is generally desirable to remove this contaminant by skimming; otherwise, the coolant lifetime may be significantly shortened. This test method provides a guide for determining the separability characteristics of way lubricants that are expected to get into aqueous alkaline metalworking coolants. It is used for specification of new oils and might be useful in monitoring of in-service oils.1.1 This test method measures the ability of single-use way lubricants to separate from metalworking coolants (synthetic coolants, semisynthetic coolants, and soluble oils) or other alkaline aqueous fluids.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 78元 / 折扣价: 67 加购物车

在线阅读 收 藏

4.1 When this test method is used to measure the threshold impact sensitivity of a material, a relative sensitivity assessment is obtained which permits the ranking of materials.4.2 This test method may also be used for acceptance-testing materials for use in liquid oxygen systems. Twenty separate samples of the material submerged in liquid oxygen are subjected to 98 J (72 ft·lbf) or as specified. Impact energy delivered through a 12.7-mm (1/2-in.) diameter contact. More than one indication of sensitivity is cause for immediate rejection. A single explosion, flash, or other indication of sensitivity during the initial series of 20 tests requires that an additional 40 samples be tested without incident to ensure acceptability of the material.4.3 The threshold values are determined by this test method at ambient pressure. The sensitivity of materials to mechanical impact is known to increase with increasing pressure. Since most liquid oxygen systems operate at pressures above ambient condition, some consideration should be given to increased sensitivity and reactivity of materials at higher pressure when selecting materials for use in pressurized system.1.1 This method2,3,4 covers the determination of compatibility and relative sensitivity of materials with liquid oxygen under impact energy using the Army Ballistic Missile Agency (ABMA)-type impact tester. Materials that are impact-sensitive with liquid oxygen are generally also sensitive to reaction by other forms of energy in the presence of oxygen.1.2 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Weakening of natural rubber latex is known to occur after contact with certain lubricants, particularly petroleum-based products.3,4 This procedure was developed as a screening method for lubricant manufacturers to determine whether or not a particular personal lubricant has a significant effect on the tensile and airburst properties of an NRL condom.4.2 This test method is designed for use on NRL condoms that meet the criteria of Specification D3492 and can: (1) have a ring specimen cut in compliance with Appendix X1 of Specification D3492 and (2) be tested for burst properties in compliance with Annex A2 of Specification D3492.4.3 This test method is not to be used to determine the safety of either the test lubricant or NRL condom. This test method is to be used only to determine if the tensile or airburst properties of the NRL condom have been significantly affected by the test lubricant.1.1 This test method covers procedures used to detect a shift in physical properties of natural rubber latex (NRL) condoms after immersion in a personal lubricant. “Personal lubricants” are lubricants such as liquids or gels that are applied by the consumer at the time of condom use.1.2 This test method does not attempt to address compatibility of lubricants applied to a condom at the time of manufacture (“manufacturer lubricants”). It shall be the responsibility of the condom manufacturer to verify the long-term stability (shelf life) of any manufacturer lubricant that is packaged within the individual condom wrapper. Other regulatory requirements may apply.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Automatic determination of stability parameters using a light back-scattering technique improves accuracy and removes human errors. In manual testing, operators have to visually compare oil stains on pieces of filter paper to determine if asphaltenes have been precipitated.5.2 Refinery thermal and hydrocracking processes can be run closer to their severity limits if stability parameters can be calculated more accurately. This gives increased yield and profitability.5.3 Results from the test method could be used to set a standard specification for stability parameters for fuel oils.5.4 The compatibility parameters of crude oils can be used in crude oil blending in refineries to determine, in advance, which crude oil blends will be compatible and thus can be used to minimize plugging problems, unit shut downs, and maintenance costs. Determination of crude oil compatibility parameters also enables refineries to select crude oil mixtures more economically.5.5 This test method can measure stability and compatibility parameters, and determine stability reserve on different blends for particular applications to optimize the blending, storage, and use of heavy fuel oilsNOTE 1: Users of this test method would normally use stability and compatibility parameters to determine stability reserve of residual products, fuel blends and crude oils. However, the interpretation of stability, stability reserve and compatibility is heavily ‘use dependent,’ and is beyond the scope of this test method.1.1 This test method covers an automated procedure involving titration and optical detection of precipitated asphaltenes for determining the stability and compatibility parameters of refinery residual streams, residual fuel oils, and crude oils. Stability in this context is the ability to maintain asphaltenes in a peptized or dissolved state and not undergo flocculation or precipitation. Similarly, compatibility relates to the property of mixing two or more oils without precipitation or flocculation of asphaltenes.1.2 This test method is applicable to residual products from atmospheric and vacuum distillation, from thermal, catalytic, and hydrocracking processes, to products typical of Specifications D396, Grades No. 5L, 5H, and 6, and D2880, Grades No. 3-GT and 4-GT, and to crude oils, providing these products contain 0.05 mass % or greater concentration of asphaltenes.1.3 This test method is not relevant to oils that contain less than 0.05 % asphaltenes, and would be pointless to apply to unstable oils that already contain flocculated asphaltenes.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This practice is designed for researchers, applicators, and end users of pesticides where one or more ingredients are being mixed into an aqueous spray system. The practice is useful in determining physical compatibility of aqueous spray mixtures of pesticides and/or fertilizers.4.2 The practice is not designed to determine physical compatibility of non-aqueous based spray mixtures.4.3 The results or the testing should be used to determine the compatibility of the mixture ingredients in dynamic applications. Interpolation of static results to the expectations of the results of this test is not encouraged.1.1 This practice describes the method for the evaluation of the physical compatibility and stability of pesticide tank mixtures diluted for aqueous application. This practice may also be adapted to use with liquid fertilizers in replacement of the water diluent.1.2 Tank mix compatibility can be affected by many variables. Care should be taken to duplicate test conditions. This practice addresses the standard variables such as time, temperature, water hardness, method of agitation, and degree of agitation.1.3 Compatibility is complex and can be affected by other variables such as order of addition, pH of the dilution water, pumping shear, etc. Under the parameters of this practice, the results will define whether the pesticide mixture is or is not compatible in the laboratory. Compatibility or incompatibility should be confirmed under field spray conditions.1.4 Proper safety and hygiene precautions must be taken when working with pesticide formulations to prevent skin or eye contact, vapor inhalation, and environmental contamination.1.5 Read and follow all handling instructions for the specific formulation and conduct the test in accordance with good laboratory practice.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This terminology defines terms related to the compatibility and sensitivity of materials in oxygen enriched atmospheres. It includes those standards under the jurisdiction of ASTM Committee G04.1.2 The terminology concentrates on terms commonly encountered in and specific to practices and methods used to evaluate the compatibility and sensitivity of materials in oxygen. This evaluation is usually performed in a laboratory environment, and this terminology does not attempt to include laboratory terms.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method assesses the degree to which asphalts interact with one another. It can indicate possible future problems, especially blistering, in a roofing product if incompatible asphalts are in contact in the product.1.1 This test method provides a means for evaluating contact compatibility between asphaltic materials. It is generally used to determine compatibility between the saturant and coating used in the manufacture of prepared roofings.2 Coating and saturant will be referred to, but comparable asphaltic materials may be tested where this test procedure seems applicable.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method is used to measure one-dimensional flow of aqueous solutions (for example, landfill leachates, liquid wastes and byproducts, single and mixed chemicals, etc., from hereon referred to as the permeant liquid) through initially saturated soils under an applied hydraulic gradient and effective stress. Interactions between some permeant liquids and some clayey soils have resulted in significant increases in the hydraulic conductivity of the soils relative to the hydraulic conductivity of the same soils permeated with water (1).4 This test method is used to evaluate the presence and effect of potential interactions between the soil specimen being permeated and the permeant liquid on the hydraulic conductivity of the soil specimen. Test programs may include comparisons between the hydraulic conductivity of soils permeated with water relative to the hydraulic conductivity of the same soils permeated with aqueous solutions to determine variations in the hydraulic conductivity of the soils due to the aqueous solutions.4.2 Flexible-wall hydraulic conductivity testing is used to determine flow characteristics of aqueous solutions through soils. Hydraulic conductivity testing using flexible-wall cells is usually preferred over rigid-wall cells for testing with aqueous solutions due to the potential for sidewall leakage problems with rigid-wall cells. Excessive sidewall leakage may occur, for example, when a test soil shrinks during permeation with the permeant liquid due to interactions between the soil and the permeant liquid in a rigid-wall cell. In addition, the use of a rigid-wall cell does not allow for control of the effective stresses that exist in the test specimen.4.3 Darcy’s law describes laminar flow through a test soil. Laminar flow conditions and, therefore, Darcy’s law may not be valid under certain test conditions. For example, interactions between a permeating liquid and a soil may cause severe channeling/cracking of the soil such that laminar flow is not maintained through a test specimen containing large open pathways for flow.4.4 Interactions that may clog the pore spaces of test soils (for example, precipitation) may occur during permeation with some permeant liquids. Flow through test soils may be severely restricted in these cases. In cases where the measured hydraulic conductivity is less than 1 × 10–12 m/s, unsteady state analysis may be used to determine the hydraulic conductivity of test soils (2).4.5 Specimens of initially water-saturated soils (for example, undisturbed natural soils) may be permeated with the permeant liquid. Specimens of water unsaturated soils (for example, compacted soils) may be fully saturated with water or the permeant liquid and then permeated with the permeant liquid. Specimens of soils initially partly or fully saturated with a particular liquid (for example, specimens collected from a containment facility subsequent to a period of use) may be fully saturated and then permeated with the same or another liquid. The use of different saturating and permeating liquids can have significant effects both on the results and the interpretation of the results of a test (1). Selection of type and sequence of liquids for saturation and permeation of test specimens is based on the characteristics of the test specimens and the requirements of the specific application for which the hydraulic conductivity testing is being conducted in a test program. The user of this standard is responsible for selecting and specifying the saturation and permeation conditions that best represent the intended application.4.6 Hydraulic conductivity of a soil with water and aqueous solution can be determined using two approaches in a test program for comparisons between the hydraulic conductivity based on permeation with water and the hydraulic conductivity based on permeation with aqueous solution. In the first approach, specimens are initially saturated (if needed) and permeated with water and then the permeating liquid is switched to the aqueous solution. This testing sequence allows for determination of both water and aqueous solution hydraulic conductivities on the same specimen. Obtaining water and aqueous solution values on the same specimen reduces the uncertainties associated with specimen preparation, handling, and variations in test conditions. However, such testing sequences may not represent actual field conditions and may affect the results of a test. In the second approach, two specimens of the same soil are permeated, with one specimen being permeated with water and the other specimen being permeated with the aqueous solution. The specimens are prepared using the same sample preparation and handling methods and tested under the same testing conditions. This approach may represent actual field conditions better than the first approach, however, uncertainties may arise due to the use of separate specimens for determining hydraulic conductivities based on permeation with water and the aqueous solution. Guidelines for preparing and testing multiple specimens for comparative studies are provided in Practice E691. The user of this standard shall be responsible for selecting and specifying the approach that best represents the intended application when comparisons of hydraulic conductivity are required.4.7 Termination criteria used in the test method are based on both achieving steady-state conditions with respect to flow and equilibrium between the chemical composition of the effluent (outflow) relative to the influent (inflow).4.8 Intrinsic permeability can be determined in addition to hydraulic conductivity using results of permeation tests described in this standard.4.9 The correlation between results obtained using this test method and the hydraulic conductivities of in-place field materials has not been completely determined. Differences may exist between the hydraulic conductivities measured on small test specimens in the laboratory and those obtained for larger volumes in the field. Therefore, the results obtained using this standard should be applied to field situations with caution and by qualified personnel.4.10 While not required for determining the hydraulic conductivity of soils with aqueous solutions, soil chemical properties such as pH, electrical conductivity, exchangeable metals (cations), and cation exchange capacity as well as the mineralogical composition of the soil may be useful in the interpretation and explanation of the test results.NOTE 1: The quality of the result produced by this standard is dependent of the competence of the personnel using this standard and the suitability of the equipment and facilities. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of these factors.1.1 This test method covers hydraulic conductivity compatibility testing of saturated soils in the laboratory with aqueous solutions that may alter hydraulic conductivity (for example, waste related liquids) using a flexible-wall permeameter. A hydraulic conductivity test is conducted until both hydraulic and chemical equilibrium are achieved such that potential interactions between the soil specimen being permeated and the aqueous solution are taken into consideration with respect to the measured hydraulic conductivity.1.2 This test method is applicable to soils with hydraulic conductivities less than approximately 1 × 10–8 m/s.1.3 In addition to hydraulic conductivity, intrinsic permeability can be determined for a soil if the density and viscosity of the aqueous solution are known or can be determined.1.4 This test method can be used for all specimen types, including undisturbed, reconstituted, remolded, compacted, etc. specimens.1.5 A specimen may be saturated and permeated using three methods. Method 1 is for saturation with water and permeation with aqueous solution. Method 2 is for saturation and permeation with aqueous solution. Method 3 is for saturation with water, initial permeation with water, and subsequent permeation with aqueous solution.1.6 The amount of flow through a specimen in response to a hydraulic gradient generated across the specimen is measured with respect to time. The amount and properties of influent and effluent liquids are monitored during the test.1.7 The hydraulic conductivity with an aqueous solution is determined using procedures similar to determination of hydraulic conductivity of saturated soils with water as described in Test Methods D5084. Several test procedures can be used, including the falling headwater-rising tailwater, the constant-head, the falling headwater-constant tailwater, or the constant rate-of-flow test procedures.1.8 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard.1.8.1 Hydraulic conductivity has traditionally been expressed in cm/s in the U.S., even though the official SI unit for hydraulic conductivity is m/s.1.8.2 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.1.8.3 The slug unit of mass is almost never used in commercial practice; i.e., density, balances, etc. Therefore, the standard unit for mass in this standard is either kilogram (kg) or gram (g), or both. Also, the equivalent inch-pound unit (slug) is not given/presented in parentheses. However, the use of balances or scales recording pounds of mass (lbm) or recording density in lbm/ft3 shall not be regarded as nonconformance with this standard.1.9 This standard contains a Hazards section related to using hazardous liquids (Section 7).1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

CSA Preface This is the first edition of CAN/CSA-C61000-2-12, Electromagnetic compatibility (EMC) - Part 2-12: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public medium-voltage power supply systems, whi

定价: 1001元 / 折扣价: 851

在线阅读 收 藏

CSA Preface This is the second edition of CAN/CSA-C61000-2-2, Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems, which i

定价: 1001元 / 折扣价: 851

在线阅读 收 藏
77 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页