微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 2141-1978 Composition and marking requirements of silver articles 现行 发布日期 :  1978-04-01 实施日期 : 

定价: 260元 / 折扣价: 221

在线阅读 收 藏

5.1 The primary purpose of this practice is to characterize the carbon-type composition of an oil. It is also applicable in observing the effect on oil constitution, of various refining processes such as hydrotreating, solvent extraction, and so forth. It has secondary application in relating the chemical nature of an oil to other phenomena that have been demonstrated to be related to oil composition.5.2 Results obtained by this practice are similar to, but not identical with, results obtained from Test Method D3238. The relationship between the two and the equations used in deriving Fig. 1 are discussed in the literature.45.3 Although this practice tends to give consistent results, it may not compare with direct measurement test methods such as Test Method D2007.1.1 This practice may be used to determine the carbon-type composition of mineral insulating oils by correlation with basic physical properties. For routine analytical purposes it eliminates the necessity for complex fractional separation and purification procedures. The practice is applicable to oils having average molecular weights from 200 to above 600, and 0 to 50 aromatic carbon atoms.1.2 Carbon-type composition is expressed as percentage of aromatic carbons, percentage of naphthenic carbons, and percentage of paraffinic carbons. These values can be obtained from the correlation chart, Fig. 1, if both the viscosity-gravity constant (VGC) and refractivity intercept (ri) of the oil are known. Viscosity, density and relative density (specific gravity), and refractive index are the only experimental data required for use of this test method.FIG. 1 Correlation Chart for Determining % CA, % CN, and % CP1.3 This practice is useful for determining the carbon-type composition of electrical insulating oils of the types commonly used in electric power transformers and transmission cables. It is primarily intended for use with new oils, either inhibited or uninhibited.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The composition and sequential structure of alginate determines the functionality of alginate in an application. For instance, the gelling properties of an alginate are highly dependent upon the monomer composition and sequential structure of the polymer. Gel strength will depend upon the guluronic acid content (FG) and also the average number of consecutive guluronate moieties in G-block structures (NG>1).4.2 Chemical composition and sequential structure of alginate can be determined by 1H- and 13C-nuclear magnetic resonance spectroscopy (NMR). A general description of NMR can be found in <761> of the USP 35-NF30. The NMR methodology and assignments are based on data published by Grasdalen et al. (1979, 1981, 1983).4, 5, 6 The NMR technique has made it possible to determine the monad frequencies FM (fraction of mannuronate units) and FG (fraction of guluronate units), the four nearest neighboring (diad) frequencies FGG, FMG, FGM, FMM, and the eight next nearest neighboring (triad) frequencies FGGG, FGGM, FMGG, FMGM, FMMM, FMMG, FGMM, FGMG. Knowledge of these frequencies enables number averages of block lengths to be calculated. NG is the number average length of G-blocks, and NG>1 is the number average length of G-blocks from which singlets (-MGM-) have been excluded. Similarly, NM is the number average length of M-blocks, and NM>1 is the number average length of M-blocks from which singlets (-GMG-) have been excluded. 13C NMR must be used to determine the M-centered triads and NM>1. This test method describes only the 1H NMR analysis of alginate. Alginate can be well characterized by determining FG and NG>1.4.3 In order to obtain well-resolved NMR spectra, it is necessary to reduce the viscosity and increase the mobility of the molecules by depolymerization of alginate to a degree of polymerization of about 20 to 50. Acid hydrolysis is used to depolymerize the alginate samples. Freeze-drying, followed by dissolution in 99 % D2O, and another freeze-drying before dissolution in 99.9 % D2O yields samples with low 1H2O content. TTHA is used as a chelator to prevent traces of divalent cations to interact with alginate. While TTHA is a more effective chelator, other agents such as EDTA and citrate may be used. Such interactions may lead to line broadening and selective loss of signal intensity.4.4 Samples are analyzed at a temperature of 80 ± 1°C. Elevated sample temperature contributes to reducing sample viscosity and repositions the proton signal of residual water to an area outside that of interest.1.1 This test method covers the determination of the composition and monomer sequence of alginate intended for use in biomedical and pharmaceutical applications as well as in Tissue Engineered Medical Products (TEMPs) by high-resolution proton NMR (1H NMR). A guide for the characterization of alginate has been published as Guide F2064.1.2 Alginate, a linear polymer composed of β-D-mannuronate (M) and its C-5 epimer α-L-guluronate (G) linked by β-(1—>4) glycosidic bonds, is characterized by calculating parameters such as mannuronate/guluronate (M/G) ratio, guluronic acid content (G-content), and average length of blocks of consecutive G monomers (that is, NG>1 ). Knowledge of these parameters is important for an understanding of the functionality of alginate in TEMP formulations and applications. This test method will assist end users in choosing the correct alginate for their particular application. Alginate may have utility as a scaffold or matrix material for TEMPs, in cell and tissue encapsulation applications, and in drug delivery formulations.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Waste composition information has widespread applications and can be used for activities such as solid waste planning, designing waste management facilities, and establishing a reference waste composition for use as a baseline standard in both facility contracts and acceptance test plans.4.2 The method can be used to define and report the composition of MSW through the selection and manual sorting of waste samples. Where applicable, care should be taken to consider the source and seasonal variation of waste.4.3 After performing a waste composition analysis, laboratory analyses may be performed on representative samples of waste components, or mixtures of waste components, for purposes related to the planning, management, design, testing, and operation of resource recovery facilities.1.1 This test method describes procedures for measuring the composition of unprocessed municipal solid waste (MSW) by employing manual sorting. This test method applies to determination of the mean composition of MSW based on the collection and manual sorting of a number of samples of waste over a selected time period covering a minimum of one week.1.2 This test method includes procedures for the collection of a representative sorting sample of unprocessed waste, manual sorting of the waste into individual waste components, data reduction, and reporting of the results.1.3 This test method may be applied at landfill sites, waste processing and conversion facilities, and transfer stations.1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This classification establishes categories of insulating coatings based on their chemical nature, relative insulating ability, and typical applications. These categories describe general physical and chemical characteristics of the coatings that are useful in making broad estimates of their insulating ability and suitability for various applications.1.1 This document classifies insulating coatings for electrical steels according to their composition, relative insulating ability, and functionality. The purpose of this classification is to assist users of insulating coatings by providing general information about the chemical nature and use of the coatings, as well as to provide important data concerning limits to their use, that is, relative insulating ability, punchability, temperature stability, weldability, and fabricability. Specific surface insulation resistivity values for each coating are not included in this classification. The user is referred to the flat-rolled electrical steel specifications noted in 1.2 should more detailed information concerning surface insulation resistivity values be required.1.2 This classification is to be used in conjunction with the various specifications for flat-rolled electrical steels under the jurisdiction of Committee A06, including Specifications A345, A677, A683, A726, A840, A876, and A1086. However, in those instances in which the coating descriptions and characteristics differ between this classification and any of the specifications, this classification shall supersede the specification.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to customary (cgs-emu and inch-pound) units which are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 A coating of terne metal on iron or steel articles is intended to provide drawability, solderability, or corrosion resistance, or combination thereof, which can require different amounts of coating. Specifications for terne-coated sheets frequently provide for these different classes (weights) of coating so that purchasers can select that most suitable for their needs. This test method provides a means of determining the weight of coating for comparison with the material specification requirements. 1.1 This test method covers the determination of the weight and composition of coating on terne sheet by the triple-spot method. The following three procedures are described: 1.1.1 Procedure A—Stripping with sulfuric acid. 1.1.2 Procedure D—Stripping with hydrochloric acid and antimony trichloride. 1.1.3 Procedure E—Stripping with hydrobromic acid-bromine solution. Note 1—Procedure B (Electrolytic Stripping) and Procedure C (Stripping with Silver Nitrate Solution), formerly in this test method, were discontinued because lack of usage. The designation for Procedure D and Procedure E are retained to avoid future confusion when reference is made only to the procedure designation. 1.2 If the percent of tin in the coating is required, stripping with hydrobromic acid-bromine is the preferred procedure. Steel with a predeposited electrolytic nickel coating requires a two-stage stripping method to determine total tin content. If both the tin and lead percentage are required, stripping with sulfuric acid is recommended, but caution is advised since the sulfuric acid procedure has been found to produce high tin results (see Section 11). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 5, Note 2, and Section 17.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This practice covers all aspects of sampling and preparing steel and iron for chemical analysis as defined in Test Methods, Practices, and Definitions A751 and Specification A48/A48M. Such subjects as sampling location and the sampling of lots are defined.4.2 This practice includes most requirements for sampling steel and iron for analysis. Standard test methods that reference this practice need contain only special modifications and exceptions.4.3 All who use these procedures should be trained samplers capable of performing common sampling operations skillfully and safely. Only proper sampling equipment should be used.1.1 This practice covers the sampling of all grades of steel, both cast and wrought, and all types (grades) of cast irons and blast furnace iron for chemical and spectrochemical determination of composition. This practice is similar to ISO 14284.1.2 This practice is divided into the following sections.  SectionsRequirements for Sampling and Sample Preparation 6General 6.1Sample 6.2Selection of a Sample 6.3Preparation of a Sample 6.4   Liquid Iron for Steelmaking and Pig Iron Production 7General 7.1Spoon Sampling 7.2Probe Sampling 7.3Preparation of a Sample for Analysis 7.4   Liquid Iron for Cast Iron Production 8General 8.1Spoon Sampling 8.2Probe Sampling 8.3Preparation of a Sample for Analysis 8.4Sampling and Sample Preparation for the Determination of 8.5 Oxygen and Hydrogen     Liquid Steel for Steel Production 9General 9.1Probe Sampling 9.2Spoon Sampling 9.3Preparation of a Sample for Analysis 9.4Sampling and Sample Preparation for the Determination 9.5 of Oxygen  Sampling and Sample Preparation for the Determination 9.6 of Hydrogen     Pig Irons 10General 10.1Increment Sampling 10.2Preparation of a Sample for Analysis 10.3   Cast Iron Products 11General 11.1Sampling and Sample Preparation 11.2     SectionsSteel Products 12General 12.1Selection of a Laboratory Sample or a Sample for 12.2 Analysis from a Cast Product  Selection of a Laboratory Sample or a Sample for 12.3 Analysis from a Wrought Product  Preparation of a Sample for Analysis 12.4Sampling of Leaded Steel 12.5Sampling and Sample Preparation for the Determination 12.6 of Oxygen     Sampling and Sample Preparation for the Determination 12.7 of Hydrogen     Keywords 13     AnnexesSampling Probes for Use with Liquid Iron and Steel Annex A1Sampling Probes for Use with Liquid Steel for the Annex A2 Determination of Hydrogen  1.3 The values stated in SI units are regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific statements, see 6.4.3.5, 9.4.4.3, 12.5.1, and Section 5.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 Performance properties are dependent on the number and type of short chain branches. This test method permits measurement of these branches for ethylene copolymers with propylene, butene-1, hexene-1, octene-1, and 4-methylpentene-1.1.1 This test method determines the molar composition of copolymers prepared from ethylene (ethene) and a second alkene-1 monomer. This second monomer can include propene, butene-1, hexene-1, octene-1, and 4-methylpentene-1.1.2 Calculations of this test method are valid for products containing units EEXEE, EXEXE, EXXE, EXXXE, and of course EEE where E equals ethene and X equals alkene-1. Copolymers containing a considerable number of alkene-1 blocks (such as, longer blocks than XXX) are outside the scope of this test method.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See Section 8 for a specific hazard statement.NOTE 1: There is no known ISO equivalent to this standard.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 These practices for the sampling of ferroalloys and steel additives are intended for use with test methods used to demonstrate compliance with composition specifications. It is assumed that all who use these methods will be trained samplers capable of performing common sampling procedures skillfully and safely.1.1 These practices include procedures for the sampling of the various ferroalloys and steel additives, either before or after shipment from the plants of the manufacturers. They are designed to give results representative of each lot that will be comparable with the manufacturer's guaranteed analysis for the same lot. For check analysis, the purchaser may use any sampling procedure desired, but the analytical results obtained on such samples shall not be a basis for compliance or rejection, unless the procedure followed is of an accuracy equivalent to that prescribed in these methods.1.2 In sampling ferroalloys and steel additives, serious errors often occur from contamination of the samples by iron from the sampling appliances. Therefore, special precautions should be observed to avoid this source of error. Metallic iron may be removed with a magnet from nonmagnetic alloys; its estimation in other alloys requires special analytical procedures (Annex A1). To avoid this error, parts of crushers and pulverizing equipment contacting the samples shall be of steel or other material showing a high resistance to abrasion of the type involved.1.3 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers the techniques used to determine the wavelength of the photoluminescence peak and the mole percent phosphorus content of gallium arsenide phosphide, GaAs(1 x)Px.1.2 Photoluminescence measurements indicate the composition only in the illuminated region and only within a very short distance from the surface, a distance limited by the penetration of the radiation and the diffusion length of the photo-generated carriers, as contrasted to X-ray measurements which sample a much deeper volume.1.3 This test method is limited by the surface preparation procedure to application to epitaxial layers of the semiconductor grown in a vapor-phase reactor on a flat substrate. It is directly applicable to n-type GaAs(1x)Px with the wavelength, PL, of the photoluminescence peak in the range from 640 to 670 nm, corresponding to mole percent phosphorus in the range from 36 to 42 % ( x = 0.36 to 0.42). The calibration data provided for the determination of x from P L is applicable to material doped with tellurium or selenium at concentrations in the range from 1016 to 1018 atoms/cm3.1.4 The principle of this test method is more broadly applicable. Other material preparation methods may require different surface treatments. Extension to other dopants, doping ranges or composition ranges requires further work to relate PL to the phosphorus content as determined by X-ray measurements of the precise dimensions of the unit cell upon which the calibration data are based. It is essential that calibration specimens have uniform composition in the volume sampled.1.5 This test method is essentially nondestructive. It requires a light etching of the sample to be measured. The removal of a layer of material approximately 0.5 to 1.0 m in thickness is required. This etching does not degrade the specimen in that devices can still be fabricated from it.1.6 This test method is applicable to process control in the preparation of materials and to materials acceptance.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 If the desired mechanical properties are as described in 5.1.1 for material identified as Classes P-1 through P-7, or in 5.1.2 for material identified as Classes Q-1 through Q-7, the strength level desired can be based on hardness or the equivalent tensile or yield strength as shown in Tables 1-4. If the desired mechanical properties are as set forth in 5.1.3 for material identified as Classes R-1 through R-6, the strength level is based on yield strength as shown in Tables 5 and 6. 4.2 The user, after determining the mechanical property requirements of the critical section (that carrying the greatest stress) of the part, should select the composition or compositions from Tables 1-6 that fulfills these requirements and is most suitable for processing. 1.1 This practice covers the selection of steel bars according to section and to the mechanical properties desired in the part to be produced. This is not a specification for the procurement of steel. Applicable procurement specifications are listed in Section 6. 1.2 Several steel compositions intended for various sections and mechanical property requirements are presented in Tables 1-6. The criteria for placing a steel composition in one of the three general class designations, Classes P, Q, and R (described in Section 5) are as follows: 1.2.1 Classes P and Q  should be capable of developing the mechanical properties shown in Tables 1-4 by liquid quenching from a suitable austenitizing temperature, and tempering at 800 °F (427 °C) or higher. A hardness indicated by tests made at a location shown in Fig. 1, A, B, or C, is taken as evidence that a composition is capable of meeting other equivalent mechanical properties shown in the tables. Normal good shop practices are assumed, with control of austenitizing and tempering temperatures, and mild agitation of the part in the quenching bath. FIG. 1 Locations in Typical Cross Sections of Steel Bars at Which Desired Properties Are Obtained 1.2.2 Class R  should be capable of developing the mechanical properties shown in Tables 5 and 6 as hot rolled, by cold drawing, or by cold drawing with additional thermal treatment. The locations for obtaining tension tests are described in 7.2. 1.3 It is not implied that the compositions listed in the tables are the only ones satisfactory for a certain class and mechanical property requirement. Steels with lower alloy contents are often satisfactory through the use of special processing techniques. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The volume fraction of physical components of coal is used as an aid in coal seam correlation and in the characterization of coals for their use in carbonization, gasification, liquefaction, and combustion processes.5.2 This test method is for use in scientific and industrial research, not compliance or referee tests.1.1 This test method covers the equipment and techniques used for determining the physical composition of a coal sample in terms of volume fraction of the organic components and of mineral matter, if desired by systematic manual point count.1.2 The term weight is temporarily used in this test method because of established trade usage. The word is used to mean both force and mass and care must be taken to determine which is meant in each case (the SI unit for force is newton and for mass, kilogram).1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method can be used to ensure absolute reproducibility of WSix film deposition systems over the course of many months. The time span of measurements is essentially the life of many process deposition systems.This test method can be used to qualify new WSix deposition systems to ensure duplicability of existing systems. This test method is essential for the coordination of global semiconductor fabrication operations using different analytical services. This test method allows samples from various deposition systems to be analyzed at different sites and times.This test method is the chosen calibration technique for a variety of analytical techniques, including, but not limited to:Electron spectroscopy for chemical analysis (ESCA or XPS),Auger electron spectroscopy (AES),Fourier transform infrared red spectroscopy (FTIR),Secondary ion mass spectrometry (SIMS), andElectron dispersive spectrometry (EDS) and particle induced x-ray emission (PIXE).1.1 This test method covers the quantitative determination of tungsten and silicon concentrations in tungsten/silicon (WSix) semiconductor process films using Rutherford Backscattering Spectrometry (RBS). (1) This test method also covers the detection and quantification of impurities in the mass range from phosphorus Å (31 atomic mass units (amu) to antimony (122 amu).1.2 This test method can be used for tungsten silicide films prepared by any deposition or annealing processes, or both. The film must be a uniform film with an areal coverage greater than the incident ion beam (∼2.5 mm).1.3 This test method accurately measures the following film properties: silicon/tungsten ratio and variations with depth, tungsten depth profile throughout film, WSix film thickness, argon concentrations (if present), presence of oxide on surface of WSix films, and transition metal impurities to detection limits of 1×1014 atoms/cm2.1.4 This test method can detect absolute differences in silicon and tungsten concentrations of ±3 and ±1 atomic percent, respectively, measured from different samples in separate analyses. Relative variations in the tungsten concentration in depth can be detected to ±0.2 atomic percent with a depth resolution of ±70Å.1.5 This test method supports and assists in qualifying WSix films by electrical resistivity techniques.1.6 This test method can be performed for WSix films deposited on conducting or insulating substrates.1.7 This test method is useful for WSix films between 20 and 400 nm with an areal coverage of greater than 1 by 1 mm2.1.8 This test method is non-destructive to the film to the extent of sputtering.1.9 A statistical process control (SPC) of WSix films has been monitored since 1993 with reproducibility to ±4 %.1.10 This test method produces accurate film thicknesses by modeling the film density of the WSix film as WSi2 (hexagonal) plus excess elemental Si2. The measured film thickness is a lower limit to the actual film thickness with an accuracy less than 10 % compared to SEM cross-section measurements (see 13.4).1.11 This test method can be used to analyze films on whole wafers up to 300 mm without breaking the wafers. The sites that can be analyzed may be restricted to concentric rings near the wafer edges for 200-mm and 300-mm wafers, depending on system capabilities.1.12 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. The reader is referenced to Section 8 of this test method for references to some of the regulatory, radiation, and safety considerations involved with accelerator operation.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Residue in LPG is a contaminant that can lead to operational problems in some end use applications. Engines, micro-turbines, fuel cells and other equipment may be sensitive to residue levels as low as 10 mg/kg.5.2 Contamination of LPG can occur during production, transport, delivery, storage and use. A qualitative indication of the contaminants can help track down the source of the contamination from manufacture, through the distribution system, and to the end user.5.3 This test method is designed to provide a lower detection limit, wider dynamic range, and better accuracy than gravimetric methods like Test Method D2158.5.4 This test method can be performed with little or no discharge of LPG vapors, compared to Test Method D2158 which requires evaporation of 100 mL of sample per test.5.5 Sampling for residue in LPG using sorbent tubes can be performed in the field, and the sorbent tubes sent to a laboratory for analysis. This saves significant costs in shipping (weight of tube is approximately 10 grams), and is much safer and easier than transporting LPG cylinders.5.6 This test method determines total residues from C6 to C40, compared to a thermal gravimetric residue method such as Test Method D2158 which heat the residue to 38°C, resulting in a lower recovery due to loss of lighter residue components.5.7 If there is a need to decrease the detection limit of residue or individual compounds of interest below 10 µg/g, the procedures in this test method can be modified to achieve 50 times enhanced detection limit, or 0.2 µg/g.1.1 This test method covers the determination of residue in LPG by automated thermal desorption/gas chromatography (ATD/GC) using flame ionization detection (FID).1.2 The quantitation of residue covers a component boiling point range from 69°C to 522°C, equivalent to the boiling points of C6 through C40 n-paraffins.1.2.1 The boiling range covers possible LPG contaminants such as gasoline, diesel fuel, phthalates and compressor oil. Qualitative information on the nature of the residue can be obtained from this test method.1.2.2 Materials insoluble in LPG and components which do not elute from the gas chromatograph or which have no response in a flame ionization detector are not determined.1.2.3 The reporting limit (or limit of quantitation) for total residue is 6.7 µg/g.1.2.4 The dynamic range of residue quantitation is 6.7 to 3300 µg/g.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification establishes requirements for an alloy having a composition of copper, tin, lead, and zinc which is used for component castings of valves, flanges, and fittings. The specimen shall have the chemical composition of major elements: copper, tin, lead zinc, nickel including cobalt. It must also be comprised of the following residual elements: iron, antimony, sulfur, phosphorus, aluminum, and silicon. Mechanical properties shall be determined from separately cast test bars. Castings shall not be repaired, plugged, welded or burned-in. Valves, flanges, and fittings shall be marked accordingly in such position as not to injure the usefulness of the casting.1.1 This specification2 establishes requirements for an alloy having a composition of copper, tin, lead, and zinc, used for component castings of valves, flanges, and fittings. The common trade name of this alloy is 85-5-5-5; the correct identification is Copper Alloy UNS No. C83600.31.2 The castings covered are used in products that may be manufactured in advance and supplied from stock from the manufacturer or other dealer.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
47 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页