微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221

在线阅读 收 藏

4.1 This test method may be used for material development, quality control, characterization, and design data generation purposes. This test method is intended to be used with ceramics whose strength is 50 MPa (~7 ksi) or greater. The test method may also be used with glass test specimens, although Test Methods C158 is specifically designed to be used for glasses. This test method may be used with machined, drawn, extruded, and as-fired round specimens. This test method may be used with specimens that have elliptical cross section geometries.4.2 The flexure strength is computed based on simple beam theory with assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one-fiftieth of the rod diameter. The homogeneity and isotropy assumptions in the standard rule out the use of this test for continuous fiber-reinforced ceramics.4.3 Flexural strength of a group of test specimens is influenced by several parameters associated with the test procedure. Such factors include the loading rate, test environment, specimen size, specimen preparation, and test fixtures (1-3).3 This method includes specific specimen-fixture size combinations, but permits alternative configurations within specified limits. These combinations were chosen to be practical, to minimize experimental error, and permit easy comparison of cylindrical rod strengths with data for other configurations. Equations for the Weibull effective volume and Weibull effective surface are included.4.4 The flexural strength of a ceramic material is dependent on both its inherent resistance to fracture and the size and severity of flaws in the material. Flaws in rods may be intrinsically volume-distributed throughout the bulk. Some of these flaws by chance may be located at or near the outer surface. Flaws may alternatively be intrinsically surface-distributed with all flaws located on the outer specimen surface. Grinding cracks fit the latter category. Variations in the flaws cause a natural scatter in strengths for a set of test specimens. Fractographic analysis of fracture surfaces, although beyond the scope of this standard, is highly recommended for all purposes, especially if the data will be used for design as discussed in Refs (3-5) and Practices C1322 and C1239.4.5 The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature and fracture toughness testing, and it is sometimes helpful in Weibull statistical studies. It also uses smaller force to break a specimen. It is also convenient for very short, stubby specimens which would be difficult to test in four-point loading. Nevertheless, four-point flexure is preferred and recommended for most characterization purposes.1.1 This test method is for the determination of flexural strength of rod-shaped specimens of advanced ceramic materials at ambient temperature. In many instances it is preferable to test round specimens rather than rectangular bend specimens, especially if the material is fabricated in rod form. This method permits testing of machined, drawn, or as-fired rod-shaped specimens. It allows some latitude in the rod sizes and cross section shape uniformity. Rod diameters between 1.5 and 8 mm and lengths from 25 to 85 mm are recommended, but other sizes are permitted. Four-point-1/4-point as shown in Fig. 1 is the preferred testing configuration. Three-point loading is permitted. This method describes the apparatus, specimen requirements, test procedure, calculations, and reporting requirements. The method is applicable to monolithic or particulate- or whisker-reinforced ceramics. It may also be used for glasses. It is not applicable to continuous fiber-reinforced ceramic composites.FIG. 1 Four-Point-1/4-Point Flexure Loading Configuration1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the ignition of a dust dispersed in air, within a closed vessel.1.2 This test method provides a measure of dust explosion pressure and rate of pressure rise. It does not provide a definitive determination of the flammability of a dust and has other severe limitations which are identified in Section 5. The preferred method for the design of safety equipment is Test Method E1226.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific safety precautions see Section 7.1.4 The values stated in inch-pound units are to be regarded as the standard. The values in parentheses are for information only.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for the determination of the cylinder heat transfer performance value of a flame-resistant material or combination of materials when exposed to a continuous and constant heat source. This is used to compare materials used in flame-resistant clothing for workers when exposed to combined convective and radiant thermal hazards.NOTE 3: Air movement at the face of the specimen and around the calorimeter can affect the measured heat transferred due to forced convective heat losses. Minimizing air movement around the specimen and test apparatus will aid in the repeatability of the results.5.2 This test method maintains the specimen with and without air gaps in a static, horizontal position and does not involve movement unless the test specimen naturally changes due to the thermal exposure.5.3 This test method specifies a standardized 84 ± 2 kW/m2 (2 ± 0.05 cal/cm2·s) exposure condition. Different exposure conditions have the potential to produce different results. Use of other exposure conditions that are representative of the expected hazard are allowed but shall be reported with the results, along with a determination of the exposure energy level stability.5.4 This test method does not predict skin burn injury from the heat exposure.5.5 This test method is similar to Test Method F2700 in that it uses the same energy heat source, water-cooled shutter, data acquisition, and measures the heat transfer through protective clothing materials using a copper calorimeter. This test method differs from Test Method F2700 in the usage of an eccentric instrumented cylinder mounted horizontally that allows for the thermal shrinkage of materials when tested.1.1 This test method measures the thermal response of a material or combination of materials using a combined convective/radiant heat transmission apparatus consisting of an eccentric cylindrical test sensor. It can be used to estimate the non-steady state thermal transfer through flame-resistant materials used in clothing when subjected to a continuous, combined convective and radiant heat exposure. The average incident heat flux is 84 kW/m2 (2 cal/cm2·s), with durations up to 30 s.1.1.1 This test method is not applicable to materials that melt, drip, or cause falling debris during the test.NOTE 1: Because of the arrangement of the equipment, if materials melt, drip, or cause falling debris during the test, the test result is invalid.1.2 Heat transmission through clothing is largely determined by its thickness, including any air gaps. The air gaps can vary considerably in different areas of the human body. This method provides a means of grading materials when tested under standard test conditions and an air gap exists between the fabric and the sensor. During the exposure, fabric temperatures can exceed 400 °C. At these temperatures some fabrics are not dimensionally stable and can shrink or stretch. The cylindrical geometry used in this test method allows such motion to occur, which will affect the time to achieve the end point of the test. These effects are not demonstrated in planar geometry test methods such as Test Method F2700.1.3 This test method is used to measure and describe the response of materials, products, or assemblies to heat under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.4 The measurements obtained and observations noted only apply to the particular material(s) tested using the specified heat flux, flame distribution, and duration.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units or other units commonly used for thermal testing. If appropriate, round the non-SI units for convenience.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Manufacturers of thermal insulation express the performance of their products in charts and tables showing heat gain or loss per unit surface area or unit length of pipe. This data is presented for typical insulation thicknesses, operating temperatures, surface orientations (facing up, down, horizontal, vertical), and in the case of pipes, different pipe sizes. The exterior surface temperature of the insulation is often shown to provide information on personnel protection or surface condensation. However, additional information on effects of wind velocity, jacket emittance, ambient conditions and other influential parameters may also be required to properly select an insulation system. Due to the large number of combinations of size, temperature, humidity, thickness, jacket properties, surface emittance, orientation, and ambient conditions, it is not practical to publish data for each possible case, Refs (7,8).5.2 Users of thermal insulation faced with the problem of designing large thermal insulation systems encounter substantial engineering cost to obtain the required information. This cost can be substantially reduced by the use of accurate engineering data tables, or available computer analysis tools, or both. The use of this practice by both manufacturers and users of thermal insulation will provide standardized engineering data of sufficient accuracy for predicting thermal insulation system performance. However, it is important to note that the accuracy of results is extremely dependent on the accuracy of the input data. Certain applications may need specific data to produce meaningful results.5.3 The use of analysis procedures described in this practice can also apply to designed or existing systems. In the rectangular coordinate system, Practice C680 can be applied to heat flows normal to flat, horizontal or vertical surfaces for all types of enclosures, such as boilers, furnaces, refrigerated chambers and building envelopes. In the cylindrical coordinate system, Practice C680 can be applied to radial heat flows for all types of piping circuits. In the spherical coordinate system, Practice C680 can be applied to radial heat flows to or from stored fluids such as liquefied natural gas (LNG).5.4 Practice C680 is referenced for use with Guide C1055 and Practice C1057 for burn hazard evaluation for heated surfaces. Infrared inspection, in-situ heat flux measurements, or both are often used in conjunction with Practice C680 to evaluate insulation system performance and durability of operating systems. This type of analysis is often made prior to system upgrades or replacements.5.5 All porous and non-porous solids of natural or man-made origin have temperature dependent thermal conductivities. The change in thermal conductivity with temperature is different for different materials, and for operation at a relatively small temperature difference, an average thermal conductivity may suffice. Thermal insulating materials (k < 0.85 {Btu·in}/{h·ft 2·°F}) are porous solids where the heat transfer modes include conduction in series and parallel flow through the matrix of solid and gaseous portions, radiant heat exchange between the surfaces of the pores or interstices, as well as transmission through non-opaque surfaces, and to a lesser extent, convection within and between the gaseous portions. With the existence of radiation and convection modes of heat transfer, the measured value should be called apparent thermal conductivity as described in Terminology C168. The main reason for this is that the premise for pure heat conduction is no longer valid, because the other modes of heat transfer obey different laws. Also, phase change of a gas, liquid, or solid within a solid matrix or phase change by other mechanisms will provide abrupt changes in the temperature dependence of thermal conductivity. For example, the condensation of the gaseous portions of thermal insulation in extremely cold conditions will have an extremely influential effect on the apparent thermal conductivity of the insulation. With all of this considered, the use of a single value of thermal conductivity at an arithmetic mean temperature will provide less accurate predictions, especially when bridging temperature regions where strong temperature dependence occurs.5.6 The calculation of surface temperature and heat loss or gain of an insulated system is mathematically complex, and because of the iterative nature of the method, computers best handle the calculation. Computers are readily available to most producers and consumers of thermal insulation to permit the use of this practice.5.7 Computer programs are described in this practice as a guide for calculation of the heat loss or gain and surface temperatures of insulation systems. The range of application of these programs and the reliability of the output is a primary function of the range and quality of the input data. The programs are intended for use with an “interactive” terminal. Under this system, intermediate output guides the user to make programming adjustments to the input parameters as necessary. The computer controls the terminal interactively with program-generated instructions and questions, which prompts user response. This facilitates problem solution and increases the probability of successful computer runs.5.8 The user of this practice may wish to modify the data input and report sections of the computer programs presented in this practice to fit individual needs. Also, additional calculations may be desired to include other data such as system costs or economic thickness. No conflict exists with such modifications as long as the user verifies the modifications using a series of test cases that cover the range for which the new method is to be used. For each test case, the results for heat flow and surface temperature must be identical (within resolution of the method) to those obtained using the practice described herein.5.9 This practice has been prepared to provide input and output data that conforms to the system of units commonly used by United States industry. Although modification of the input/output routines could provide an SI equivalent of the heat flow results, no such “metric” equivalent is available for some portions of this practice. To date, there is no accepted system of metric dimensions for pipe and insulation systems for cylindrical shapes. The dimensions used in Europe are the SI equivalents of American sizes (based on Practice C585), and each has a different designation in each country. Therefore, no SI version of the practice has been prepared, because a standard SI equivalent of this practice would be complex. When an international standard for piping and insulation sizing occurs, this practice can be rewritten to meet those needs. In addition, it has been demonstrated that this practice can be used to calculate heat transfer for circumstances other than insulated systems; however, these calculations are beyond the scope of this practice.1.1 This practice provides the algorithms and calculation methodologies for predicting the heat loss or gain and surface temperatures of certain thermal insulation systems that can attain one dimensional, steady- or quasi-steady-state heat transfer conditions in field operations.1.2 This practice is based on the assumption that the thermal insulation systems can be well defined in rectangular, cylindrical or spherical coordinate systems and that the insulation systems are composed of homogeneous, uniformly dimensioned materials that reduce heat flow between two different temperature conditions.1.3 Qualified personnel familiar with insulation-systems design and analysis should resolve the applicability of the methodologies to real systems. The range and quality of the physical and thermal property data of the materials comprising the thermal insulation system limit the calculation accuracy. Persons using this practice must have a knowledge of the practical application of heat transfer theory relating to thermal insulation materials and systems.1.4 The computer program that can be generated from the algorithms and computational methodologies defined in this practice is described in Section 7 of this practice. The computer program is intended for flat slab, pipe and hollow sphere insulation systems.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

4.1 This test method provides a means for comparing the relative shrinkage or expansion of cementitious mixtures. It is particularly applicable to grouting, patching, and form-filling operations where the objective is to completely fill a cavity or other defined space with a freshly mixed cementitious mixture that will continue to fill the same space at time of hardening. It would be appropriate to use this test method as a basis for prescribing mixtures having restricted or specified volume change before the mixture becomes hard.4.2 This test method can be used for research purposes to provide information on volume changes taking place in cementitious mixtures between the time just after mixing and the time of hardening. However, the specimen used in this test method is not completely unrestrained so that the measurements are primarily useful for comparative purposes rather than as absolute values. Further, the degree of restraint to which the specimen is subjected varies with the viscosity and degree of hardening of the mixture.1.1 This test method covers the determination of change in height of cylindrical specimens from the time of molding until the mixture is hard.1.2 This test method covers height change measurements at early ages for cementitious mixtures of paste, grout, mortar, and concrete.1.3 This test method is intended for determination of changes in height that occur from the time of placement until the specimen is fully hard. These include shrinkage or expansion due to hydration, settlement, evaporation, and other physical and chemical effects.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined1.5 The text of this test method refers to notes and footnotes that provide explanatory information. These notes and footnotes shall not be considered as requirements of the test method.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to exposed skin and tissue upon prolonged exposure.2)1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
49 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页